Skip to main content
    • Aa
    • Aa

Examination of the impact of electron–phonon coupling on fission enhanced diffusion in uranium dioxide using classical molecular dynamics

  • Jonathan L. Wormald (a1) and Ayman I. Hawari (a1)

Fission energy deposition in nuclear fuel has been experimentally observed to influence diffusion in uranium dioxide (UO2). This deposition is initially dominated by inelastic interactions with the electronic structure. Subsequently, energy is transferred to the lattice through electron–phonon (e–p) coupling resulting in a thermal spike and an associated pressure spike, which are presumed to contribute to diffusion enhancement. Molecular dynamics (MD) simulations were performed to investigate uranium diffusion enhancement in UO2 while varying the e–p coupling. The model was composed of 10 × 60 × 60 unit cells and used a Buckingham potential. A two-temperature model captured energy deposition in the electronic subsystem and its transfer to the atomic lattice. Experimentally, the fission enhanced diffusion coefficient (D*) of uranium in UO2 is observed to be athermal and proportional to fission rate density. For fission rate densities that are reported in experiment, the MD predicted D* was found to be on the order of 10−18 cm2/s, in reasonable agreement with experimental trends, and to decrease as e–p coupling was weakened.

Corresponding author
a)Address all correspondence to this author. e-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

Hj. Matzke : Radiation effects in nuclear fuel. In Radiation Effects in Solids, K.E. Sickafus , E.A. Kotomin , and B.P. Uberuaga eds.; Springer: Berlin, Germany, 2007; pp. 401420.

Hj. Matzke : Radiation damage in crystalline insulators, oxides and ceramic nuclear fuels. Radiat. Eff. 64, 3 (1982).

M. Tamaki , A. Ohnuki , H. Matsui , G. Matsumoto , and T. Kirihara : Variation in magnetic ordering of UN by neutron irradiation. Physica B+C 102, 258 (1980).

H. Matsui , M. Horiki , and T. Kirihara : Irradiation of uranium carbides in JMTR. J. Nucl. Sci. Technol. 18, 922 (1981).

C. Rochi and T. Wiss : Fission-fragment spikes in uranium dioxide. J. Appl. Phys. 92, 5837 (2002).

C. Rochi : The nature of surface fission tracks in UO2. J. Appl. Phys. 44, 3575 (1973).

T. Wiss , Hj. Matzke , C. Trautman , M. Toulemonde , and S. Klaummünzer : Radiation damage in UO2 by swift heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 122, 583 (1997).

P. Ruello , K.D. Becker , K. Ullrich , L. Desgranges , C. Petot , and G. Petot-Ervas : Thermal variation of the optical absorption of UO2: Determination of the small polaron self-energy. J. Nucl. Mater. 328, 46 (2004).

A.C. Momin , E.B. Mirz , and M.D. Mathews : High temperature X-ray diffractometric studies on the lattice thermal expansion behavior of UO2, ThO2, and (U0.2Th0.8)O2 doped with fission product oxides. J. Nucl. Mater. 185, 308 (1991).

A. Höh and Hj. Matzke : Fission-enhanced self-diffusion of uranium in UO2 and UC. J. Nucl. Mater. 48, 157 (1973).

Hj. Matzke : Radiation enhanced diffusion in UO2 and (U,Pu)O2. Radiat. Eff. 75, 317 (1983).

D. Brucklacher and W. Dienst : Creep behavior of ceramic fuels under neutron irradiation. J. Nucl. Mater. 42, 285 (1972).

W. Dienst : Irradiation induced creep of ceramic nuclear fuel. J. Nucl. Mater. 65, 1 (1977).

N. Béred , A. Chevarier , N. Moncoffre , Ph. Sainsot , H. Faust , and H. Catalette : Fission enhanced diffusion of uranium in zirconia. Nucl. Instrum. Methods Phys. Res., Sect. B 240, 711 (2005).

Y. Arai , Y. Suzuki , T. Iwai , and T. Ohmichi : Dependence of the thermal conductivity of (U,Pu)N on porosity and plutonium content. J. Nucl. Mater. 195, 37 (1992).

R. De Coninck , W. Van Lierde , and A. Gijs : Uranium carbide: Thermal diffusivity, thermal conductivity and spectral emissivity at high temperatures. J. Nucl. Mater. 57, 69 (1975).

J.K. Fink : Thermophysical properties of uranium dioxide. J. Nucl. Mater. 279, 1 (2000).

J.P. Chang , Y. Lin , and K. Chu : Rapid thermal chemical vapor deposition of zirconium oxide for metal-oxide-semiconductor field effect transistor application. J. Vac. Sci. Technol., B 19, 1782 (2001).

P.E. Blochl : Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

G. Kresse and D. Joubert : From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

G. Kresse and J. Furthmüller : Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).

G. Kresse and J. Furthmüller : Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

J.P. Perdew , K. Burke , and M. Ernzerhof : Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

J.P. Perdew , K. Burke , and M. Ernzerhof : Erratum: Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997).

K. Nishio , H. Yamamoto , I. Kanno , I. Kimura , and Y. Nakagomeb : A system for correlation measurement of fission fragment and prompt neutrons for thermal neutron induced fission. Nucl. Instrum. Methods Phys. Res., Sect. A 385, 171 (1990).

J.F. Ziegler , M.D. Ziegler , and J.P. Biersack : SRIM: The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010).

M. Toulemonde , E. Paumier , and C. Dufour : Thermal spike model in the electronic stopping power regime. Radiat. Eff. Defects Solids 126, 201 (1993).

O. Osmani , N. Medvedev , M. Schleberger , and B. Rethfeld : Energy dissipation in dielectrics after swift heavy-ion impact: A hybrid model. Phys. Rev. B 84, 214105 (2011).

D.K. Avasthi and G.K. Metha : Swift Heavy Ions for Materials Engineering and Nanostructuring (Capital Publishing Company, Springer, New Delhi, India, 2011).

A. Caro and M. Victoria : Ion-electron interaction in molecular dynamics cascades. Phys. Rev. B 40, 2287 (1989).

D.M. Duffy , S.L. Daraszewicz , and J. Mulroue : Modelling the effects of electronic excitations in ionic-covalent materials. Nucl. Instrum. Methods Phys. Res., Sect. B 277, 21 (2012).

M. Backman , M. Toulemonde , O.H. Pakarinen , N. Juslin , F. Djurabekova , K. Nordlund , A. Debelle , and W.J. Weber : Molecular dynamics simulations of swift heavy ion induced defect recovery in SiC. Comput. Mater. Sci. 67, 261 (2013).

M. Huang , D. Schwen , and R.S. Averback : Molecular dynamic simulation of fission fragment induced thermal spikes in UO2: Sputtering and bubble re-solution. J. Nucl. Mater. 399, 175 (2010).

M.R.P. Waligorski , R.N. Hamm , and R. Katz : The radial distribution of dose around the path of a heavy ion in liquid water. Nucl. Tracks Meas. 11, 309 (1986).

P.B. Allen : Theory of thermal relaxation of electrons in metals. Phys. Rev. Lett. 59, 1460 (1987).

S.J. Plimpton : Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).

J. Pakarinen , L. He , M. Gupta , J. Gan , A. Nelson , A. El-Azab , and T.R. Allen : 2.6 MeV proton irradiation effects on the surface integrity of depleted UO2. Nucl. Instrum. Methods Phys. Res., Sect. B 319, 100 (2014).

L.F. He , J. Pakarinen , J. Gan , A.T. Nelson , X-M. Bai , A. El-Azab , and T.R. Allen : Microstructure evolution in Xe-irradiated UO2 at room temperature. Nucl. Instrum. Methods Phys. Res., Sect. B 330, 55 (2014).

Hj. Matzke : On uranium self-diffusion in UO2 and UO2+x. J. Nucl. Mater. 30, 26 (1986).

A.C.S. Sabioni , W.B. Ferraz , and F. Millot : First study of uranium self-diffusion in UO2 by SIMS. J. Nucl. Mater. 257, 180 (1998).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 4
Total number of PDF views: 26 *
Loading metrics...

Abstract views

Total abstract views: 83 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th March 2017. This data will be updated every 24 hours.