Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-15T17:40:27.464Z Has data issue: false hasContentIssue false

Drug–matrix interactions in nanostructured materials containing fluoxetine using sol-gel titanium oxide as a matrix

Published online by Cambridge University Press:  13 September 2011

Mayra González*
Affiliation:
Engineering and Chemical Research Center, C.P. 10600, C. Havana City, Cuba; and Polymer Lab, Institute of Materials Science and Technology, University of Havana, C.P. 10400, C. Havana City, Cuba
Jacques Rieumont
Affiliation:
Department of Physical Chemistry, Faculty of Chemistry, University of Havana, C.P. 10600, Havana City, Cuba
Francois Figueras
Affiliation:
Institut de Recherche sur la Catalyse et l’Environnement de Lyon, UMR 5256, Villeurbanne, France
Patricia Quintana
Affiliation:
Department of Applied Physics, CINVESTAV-IPN, Mérida, A.P. 73, Cordemex, C.P. 97310, Mérida, Yucatán, México
*
a)Address all correspondence to this author. e-mail: mayra.hurtado@infomed.sld.cu
Get access

Abstract

Titanium oxide matrix was prepared by sol-gel adding fluoxetine [Prozac (C17H18NF3O)] during the reaction of gelation. This nanostructured material was studied by Fourier transform infrared (FTIR) spectroscopy, N2 adsorption, and x-ray diffraction to detect the interaction between the drug and the matrix. The complex nature of FTIR signals for the matrix and the drug did not allow observation of the interactions; however, using the density functional theory formalism, two stable complexes are suggested to be formed on the drug–matrix system. Both complexes are formed through H bond interactions involving the amine group in fluoxetine and the hydroxylated sites in titanium xerogel. They were found to be energetically stable and independent of the titanium model core cluster used in the calculations.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kinam, P.: Nanotechnology: What it can do for drug delivery. J. Control. Release 3, 1201 (2007).Google Scholar
2.Vallet-Regi, M., Ramila del Real, A., and Perez-Pariente, R.P.: Nanostructure of bioactive sol−gel glasses and organic−inorganic hybrids. J. Chem. Mater. 13, 308 (2005).CrossRefGoogle Scholar
3.Vinu, A., Dhanshri Sawant, P., Ariga, K., Hossain, K.Z., Halligudi, S.B., Hartmann, M., and Nomura, M.: Direct synthesis of well-ordered and unusually reactive FeSBA-15 mesoporous molecular sieves. Chem. Mater. 17, 4577 (2005).CrossRefGoogle Scholar
4.López, T., Ortiz-Islas, E., Manjarrez, J., Reynoso, F., Sepulveda, R., González, A.R.D.: Structural, optical and vibrational properties of sol–gel titania valproic acid reservoirs. Opt. Mater. 29, 70 (2006).CrossRefGoogle Scholar
5.Horcajada, P., Ramila, A., Ferey, G., and Vallet-Regi, M.: Tissue regeneration: A new property of mesoporous materials. Solid State Sci. 8, 1243 (2005).CrossRefGoogle Scholar
6.Cabañas, M.V., Peña, J., Román, J., and Vallet-Regí, M.: Tailoring vancomycin release from β-TCP/agarose scaffolds. Eur. J. Pharm. Sci. 37, 3 (2009).CrossRefGoogle ScholarPubMed
7.Benitas, S.: Methods and Industrial Applications (Marcel Dekker Inc, New York, 1996), pp. 4580.Google Scholar
8.Patravale, V.B., Date, A.A., and Kulkarni, R.M.: Nanosuspensions a promising drug delivery strategy. J. Pharm. Pharmacol. 56, 827 (2004).CrossRefGoogle ScholarPubMed
9.González, M.: Obtención y estudio de las propiedades química-físicas de materiales nanoestructurados que contienen diferentes fármacos de interés. Ph.D.Thesis, University of Havana, 2009.Google Scholar
10.Barret, E.P., Joyner, L.G., and Halenda, P.P.: The determination of pore volume and area distributions in porous substances. J. Am. Chem. Soc. 73, 373 (1951).CrossRefGoogle Scholar
11.Gaussian 03. (2004) Revision D.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M. W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, Gaussian, Inc., Wallingford CT.Google Scholar
12.Becke, A. D.. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
13.Dunning, T.H. Jr. and Hay, P.J.: Modern Theoretical Chemistry, edited by Schaefer, H. F. III (Plenum, New York. 1976), pp. 341450.Google Scholar
14.(a) Fukui, K.: Role of frontier orbitals in chemical reactions. Science. 218, 747 (1982). (b) R.G. Parr and W. Yang: Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc. 106, 4049 (1984).CrossRefGoogle ScholarPubMed
15.Delley, B.: An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508 (1990).CrossRefGoogle Scholar
16.Delley, B.: From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756 (2000).CrossRefGoogle Scholar
17.Yang, W. and Mortier, W.J.: The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J. Am. Chem. Soc. 108, 5708 (1986).CrossRefGoogle ScholarPubMed
18.Hirshfeld, F.L.: Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta. 44, 129 (1977).CrossRefGoogle Scholar
19.Gonzalez, M. and Rieumont, J.. Obtaining by sol-gel of nanostructured materials loaded with fluoxetine kinetic considerations. LabCiencia con noticias técnicas del laboratorio 1, 36 (2011).Google Scholar
20.Bezrodna, T. and Puchkovska, G.: IR-analysis of H-bonded H2O on the pure TiO2 surface. J. Mol. Struct. J. Mol. Struct. 70, 175 (2004).CrossRefGoogle Scholar
21.Tchoul, M., Fillery, S.P., Koerner, H., Drummy, L.F., Oyerokun, F.T., Mirau, P.A., Durstock, M.F., and Vaia, R.A.: Assemblies of titanium dioxide-polystyrene hybrid nanoparticles for dielectric applications. Chem. Mater. 22, 1749 (2010).CrossRefGoogle Scholar
22.Poulios, E., Micropoulou, E., Panou, R., and Kostopoulou, E.: Kinetic study of the photocatalytic recovery of Pt from aqueous solution by TiO2, in a closed-loop reactor. Appl. Catal. B. 4, 1345 (2003).Google Scholar
23.Balasubramanian, B., Kraemer, K.L., Reding, N.A., Skomski, R., Ducharme, S., and Sellmyer, D.J.: Synthesis of monodisperse TiO2 paraffin core-shell nanoparticles for improved dielectric properties. ACS Nano 4(4), 1893 (2010).CrossRefGoogle ScholarPubMed
24.Gomes, V., Fernanda, M.B., and Gomes, S.: Principias metodos de caracterizacao de porosidade de resinas a base de divinilbenzeno. Quim. Nova 24(6), 808 (2001).Google Scholar
25.Brunnauer, S., Emmet, P., and Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
26.Okuno, Y.: Theoretical investigation of the mechanism of the Baeyer-Villiger reaction in nonpolar solvents. Chemistry 3, 212 (1997).CrossRefGoogle ScholarPubMed
27.Watson, S., Beydoun, J., and Amal, R.: Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis. J. Nanopart. Res. 6, 193 (2004).CrossRefGoogle Scholar
28.Dzubiella, J. and Hansen, J-P.: Electric-field-controlled water and ion permeation of a hydrophobic nanopore. J. Phys. Chem. B 122, 4702 (2005).Google ScholarPubMed
29.Aguado, C., Pérez, B., Ugarte, M., and Desviat, L.R.: Analysis of the effect of tetrahydrobiopterin on PAH gene expression in hepatoma cells. FEBS Lett. 7, 1697 (2006).CrossRefGoogle Scholar
30.Galano, A.: Influence of silicon defects on the adsorption of thiophene-like compounds on polycyclic aromatic hydrocarbons: A theoretical study using thiophene + coronene as the simplest mode. J. Phys. Chem. A 111, 4726 (2007).CrossRefGoogle Scholar