Skip to main content
    • Aa
    • Aa

Duplex nanocrystalline alloys: Entropic nanostructure stabilization and a case study on W–Cr

  • Tongjai Chookajorn (a1), Mansoo Park (a2) and Christopher A. Schuh (a2)

Grain boundary (GB) segregation can markedly improve the stability of nanostructured alloys, where the fraction of GB sites is inherently large. Here, we explore the concept of entropically supported GB segregation in alloys with a tendency to phase-separate and its role in stabilizing nanostructures therein. These duplex nanocrystalline alloys are notably different, both in a structural and thermodynamic sense, from the previously studied “classical” nanocrystalline alloys, which are solid solutions with GB segregation of solute. Experiments are conducted on the W–Cr system, in which nanoduplex structures are expected. Upon heating ball-milled W–15 at.% Cr up to 950 °C, a nanoscale Cr-rich phase was found along the GBs. These precipitates mostly dissolved into the W-rich grains leaving behind Cr-enriched GBs upon further heating to 1400 °C. The presence of Cr-rich nanoprecipitates and GB segregation of Cr is in line with prediction from our Monte Carlo simulation when GB states are incorporated into the alloy thermodynamics.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All
1. ZhaoY., HeD.W., DaemenL.L., ShenT.D., SchwarzR.B., ZhuY., BishD.L., HuangJ., ZhangJ., ShenG., QianJ., and ZerdaT.W.: Superhard B–C–N materials synthesized in nanostructured bulks. J. Mater. Res. 17(12), 3139 (2002).
2. LeiY., ItoY., BrowningN.D., and MazanecT.J.: Segregation effects at grain boundaries in fluorite-structured ceramics. J. Am. Ceram. Soc. 85(9), 2359 (2002).
3. Anselmi-TamburiniU., GarayJ.E., MunirZ.A., TaccaA., MagliaF., ChiodelliG., and SpinoloG.: Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part II. Characterization studies. J. Mater. Res. 19(11), 3263 (2004).
4. MatsuiK., OhmichiN., OhgaiM., YoshidaH., and IkuharaY.: Effect of alumina-doping on grain boundary segregation-induced phase transformation in yttria-stabilized tetragonal zirconia polycrystal. J. Mater. Res. 21(09), 2278 (2006).
5. BuonassisiT., IstratovA.A., PickettM.D., HeuerM., KalejsJ.P., HahnG., MarcusM.A., LaiB., CaiZ., HealdS.M., CiszekT.F., ClarkR.F., CunninghamD.W., GaborA.M., JonczykR., NarayananS., SauarE., and WeberE.R.: Chemical natures and distributions of metal impurities in multicrystalline silicon materials. Prog. Photovoltaics 14(6), 513 (2006).
6. BiswasK., HeJ., BlumI.D., WuC-I., HoganT.P., SeidmanD.N., DravidV.P., and KanatzidisM.G.: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489(7416), 414 (2012).
7. BechtleS., KumarM., SomerdayB.P., LauneyM.E., and RitchieR.O.: Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials. Acta Mater. 57(14), 4148 (2009).
8. WatanabeT. and TsurekawaS.: The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering. Acta Mater. 47(15–16), 4171 (1999).
9. ShenT.D., SchwarzR.B., FengS., SwadenerJ.G., HuangJ.Y., TangM., ZhangJ., VogelS.C., and ZhaoY.: Effect of solute segregation on the strength of nanocrystalline alloys: Inverse Hall–Petch relation. Acta Mater. 55(15), 5007 (2007).
10. ChenH-P., KaliaR.K., KaxirasE., LuG., NakanoA., NomuraK-i., van DuinA.C., VashishtaP., and YuanZ.: Embrittlement of metal by solute segregation-induced amorphization. Phys. Rev. Lett. 104(15), 155502 (2010).
11. LuoJ., ChengH., AslK.M., KielyC.J., and HarmerM.P.: The role of a bilayer interfacial phase on liquid metal embrittlement. Science 333(6050), 1730 (2011).
12. LiY.J., ChoiP., GotoS., BorchersC., RaabeD., and KirchheimR.: Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire. Acta Mater. 60(9), 4005 (2012).
13. HerbigM., RaabeD., LiY., ChoiP., ZaeffererS., and GotoS.: Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys. Rev. Lett. 112(12), 126103 (2014).
14. PovstugarI., ChoiP-P., NeumeierS., BauerA., ZenkC.H., GökenM., and RaabeD.: Elemental partitioning and mechanical properties of Ti- and Ta-containing Co–Al–W-base superalloys studied by atom probe tomography and nanoindentation. Acta Mater. 78, 78 (2014).
15. ChookajornT. and SchuhC.A.: Nanoscale segregation behavior and high-temperature stability of nanocrystalline W–20 at.% Ti. Acta Mater. 73, 128 (2014).
16. DetorA.J. and SchuhC.A.: Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22(11), 3233 (2007).
17. ChoiS-Y., YoonD-Y., and KangS-J.L.: Kinetic formation and thickening of intergranular amorphous films at grain boundaries in barium titanate. Acta Mater. 52(12), 3721 (2004).
18. RuanS., TorresK.L., ThompsonG.B., and SchuhC.A.: Gallium-enhanced phase contrast in atom probe tomography of nanocrystalline and amorphous Al–Mn alloys. Ultramicroscopy 111(8), 1062 (2011).
19. SchuhC.A., KumarM., and KingW.E.: Analysis of grain boundary networks and their evolution during grain boundary engineering. Acta Mater. 51(3), 687 (2003).
20. ZhengS., BeyerleinI.J., CarpenterJ.S., KangK., WangJ., HanW., and MaraN.A.: High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat. Commun. 4, 1696 (2013).
21. ZhengS., CarpenterJ.S., McCabeR.J., BeyerleinI.J., and MaraN.A.: Engineering interface structures and thermal stabilities via SPD processing in bulk nanostructured metals. Sci. Rep. 4, 16 (2014).
22. JohnsonO.K. and SchuhC.A.: The triple junction hull: Tools for grain boundary network design. J. Mech. Phys. Solids 69, 2 (2014).
23. BeyerleinI.J., ZhangX., and MisraA.: Growth twins and deformation twins in metals. Annu. Rev. Mater. Res. 44(1), 329 (2014).
24. WeissmüllerJ.: Alloy effects in nanostructures. Nanostruct. Mater. 3(1–6), 261 (1993).
25. WeissmüllerJ.: Alloy thermodynamics in nanostructures. J. Mater. Res. 9(01), 4 (1994).
26. WeissmüllerJ.: Some basic notions on nanostructured solids. Mater. Sci. Eng., A 179, 102 (1994).
27. KirchheimR.: Grain coarsening inhibited by solute segregation. Acta Mater. 50(2), 413 (2002).
28. KirchheimR.: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 55(15), 5129 (2007).
29. KirchheimR.: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation: II. Experimental evidence and consequences. Acta Mater. 55(15), 5139 (2007).
30. MillettP.C., SelvamR.P., BansalS., and SaxenaA.: Atomistic simulation of grain boundary energetics – Effects of dopants. Acta Mater. 53(13), 3671 (2005).
31. MillettP.C., SelvamR.P., and SaxenaA.: Molecular dynamics simulations of grain size stabilization in nanocrystalline materials by addition of dopants. Acta Mater. 54(2), 297 (2006).
32. MillettP.C., SelvamR.P., and SaxenaA.: Stabilizing nanocrystalline materials with dopants. Acta Mater. 55(7), 2329 (2007).
33. RaabeD., HerbigM., SandlöbesS., LiY., TytkoD., KuzminaM., PongeD., and ChoiP.P.: Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces. Curr. Opin. Solid State Mater. Sci. 18(4), 253 (2014).
34. TangM., CarterW.C., and CannonR.M.: Grain boundary transitions in binary alloys. Phys. Rev. Lett. 97(7), 075502 (2006).
35. DillonS.J., TangM., CarterW.C., and HarmerM.P.: Complexion: A new concept for kinetic engineering in materials science. Acta Mater. 55(18), 6208 (2007).
36. BaramM., ChatainD., and KaplanW.D.: Nanometer-thick equilibrium films: The interface between thermodynamics and atomistics. Science 332(6026), 206 (2011).
37. RaabeD., SandlöbesS., MillánJ., PongeD., AssadiH., HerbigM., and ChoiP.P.: Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite. Acta Mater. 61(16), 6132 (2013).
38. HanW., DemkowiczM.J., MaraN.A., FuE., SinhaS., RollettA.D., WangY., CarpenterJ.S., BeyerleinI.J., and MisraA.: Design of radiation tolerant materials via interface engineering. Adv. Mater. 25(48), 6975 (2013).
39. CantwellP.R., TangM., DillonS.J., LuoJ., RohrerG.S., and HarmerM.P.: Grain boundary complexions. Acta Mater. 62, 1 (2014).
40. BalettoF. and FerrandoR.: Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys. 77(1), 371 (2005).
41. DouX., LiG., and LeiH.: Kinetic versus thermodynamic control over growth process of electrodeposited Bi/BiSb superlattice nanowires. Nano Lett. 8(5), 1286 (2008).
42. VajoJ.J.: Influence of nano-confinement on the thermodynamics and dehydrogenation kinetics of metal hydrides. Curr. Opin. Solid State Mater. Sci. 15(2), 52 (2011).
43. ChookajornT., MurdochH.A., and SchuhC.A.: Design of stable nanocrystalline alloys. Science 337(6097), 951 (2012).
44. MurdochH.A. and SchuhC.A.: Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta Mater. 61(6), 2121 (2013).
45. ChookajornT. and SchuhC.A.: Thermodynamics of stable nanocrystalline alloys: A Monte Carlo analysis. Phys. Rev. B 89(6), 064102 (2014).
46. ChookajornT.: Enhancing stability of powder-route nanocrystalline tungsten-titanium via alloy thermodynamics. In Department of Materials Science and Engineering (Massachusetts Institute of Technology, Cambridge, MA, 2013).
47. KirchheimR.: Comment on “Unexplored topics and potentials of grain boundary engineering” by L.S. Shvindlerman and G. Gottstein. Scr. Mater. 55(10), 963 (2006).
48. GottsteinG. and ShvindlermanL.S.: Reply to comments on “Unexplored topics and potentials of grain boundary engineering”. Scr. Mater. 55(10), 965 (2006).
49. TurchiP.E.A., KaufmanL., and LiuZ.K.: Modeling of Ni-Cr-Mo based alloys: Part I—phase stability. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 30(1), 70 (2006).
50. CorderoZ.C. and SchuhC.A.: Phase strength effects on chemical mixing in extensively deformed alloys. Acta Mater. 82, 123 (2015).
51. ParkM. and SchuhC.A.: Mechanism to accelerate sintering in phase-separating nanostructured alloys. Manuscript presently under review.
52. JoyD.C., RomigA.D., and GoldsteinJ.: Principles of Analytical Electron Microscopy (Springer, New York, 1986).
53. LorimerG.: Quantitative X-ray microanalysis of thin specimens in the transmission electron microscope; a review. Mineral. Mag. 51(359), 49 (1987).
54. ShihS-J., Lozano-PerezS., and CockayneD.J.H.: Investigation of grain boundaries for abnormal grain growth in polycrystalline SrTiO3 . J. Mater. Res. 25(02), 260 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 7
Total number of PDF views: 91 *
Loading metrics...

Abstract views

Total abstract views: 291 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.