Skip to main content
    • Aa
    • Aa

Duplex nanocrystalline alloys: Entropic nanostructure stabilization and a case study on W–Cr

  • Tongjai Chookajorn (a1), Mansoo Park (a2) and Christopher A. Schuh (a2)

Grain boundary (GB) segregation can markedly improve the stability of nanostructured alloys, where the fraction of GB sites is inherently large. Here, we explore the concept of entropically supported GB segregation in alloys with a tendency to phase-separate and its role in stabilizing nanostructures therein. These duplex nanocrystalline alloys are notably different, both in a structural and thermodynamic sense, from the previously studied “classical” nanocrystalline alloys, which are solid solutions with GB segregation of solute. Experiments are conducted on the W–Cr system, in which nanoduplex structures are expected. Upon heating ball-milled W–15 at.% Cr up to 950 °C, a nanoscale Cr-rich phase was found along the GBs. These precipitates mostly dissolved into the W-rich grains leaving behind Cr-enriched GBs upon further heating to 1400 °C. The presence of Cr-rich nanoprecipitates and GB segregation of Cr is in line with prediction from our Monte Carlo simulation when GB states are incorporated into the alloy thermodynamics.

Corresponding author
a)Address all correspondence to this author. e-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

K. Biswas , J. He , I.D. Blum , C-I. Wu , T.P. Hogan , D.N. Seidman , V.P. Dravid , and M.G. Kanatzidis : High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489(7416), 414 (2012).

S. Bechtle , M. Kumar , B.P. Somerday , M.E. Launey , and R.O. Ritchie : Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials. Acta Mater. 57(14), 4148 (2009).

T. Watanabe and S. Tsurekawa : The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering. Acta Mater. 47(15–16), 4171 (1999).

T.D. Shen , R.B. Schwarz , S. Feng , J.G. Swadener , J.Y. Huang , M. Tang , J. Zhang , S.C. Vogel , and Y. Zhao : Effect of solute segregation on the strength of nanocrystalline alloys: Inverse Hall–Petch relation. Acta Mater. 55(15), 5007 (2007).

J. Luo , H. Cheng , K.M. Asl , C.J. Kiely , and M.P. Harmer : The role of a bilayer interfacial phase on liquid metal embrittlement. Science 333(6050), 1730 (2011).

Y.J. Li , P. Choi , S. Goto , C. Borchers , D. Raabe , and R. Kirchheim : Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire. Acta Mater. 60(9), 4005 (2012).

I. Povstugar , P-P. Choi , S. Neumeier , A. Bauer , C.H. Zenk , M. Göken , and D. Raabe : Elemental partitioning and mechanical properties of Ti- and Ta-containing Co–Al–W-base superalloys studied by atom probe tomography and nanoindentation. Acta Mater. 78, 78 (2014).

S-Y. Choi , D-Y. Yoon , and S-J.L. Kang : Kinetic formation and thickening of intergranular amorphous films at grain boundaries in barium titanate. Acta Mater. 52(12), 3721 (2004).

S. Ruan , K.L. Torres , G.B. Thompson , and C.A. Schuh : Gallium-enhanced phase contrast in atom probe tomography of nanocrystalline and amorphous Al–Mn alloys. Ultramicroscopy 111(8), 1062 (2011).

C.A. Schuh , M. Kumar , and W.E. King : Analysis of grain boundary networks and their evolution during grain boundary engineering. Acta Mater. 51(3), 687 (2003).

S. Zheng , I.J. Beyerlein , J.S. Carpenter , K. Kang , J. Wang , W. Han , and N.A. Mara : High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat. Commun. 4, 1696 (2013).

J. Weissmüller : Alloy effects in nanostructures. Nanostruct. Mater. 3(1–6), 261 (1993).

R. Kirchheim : Grain coarsening inhibited by solute segregation. Acta Mater. 50(2), 413 (2002).

R. Kirchheim : Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 55(15), 5129 (2007).

R. Kirchheim : Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation: II. Experimental evidence and consequences. Acta Mater. 55(15), 5139 (2007).

P.C. Millett , R.P. Selvam , and A. Saxena : Stabilizing nanocrystalline materials with dopants. Acta Mater. 55(7), 2329 (2007).

D. Raabe , M. Herbig , S. Sandlöbes , Y. Li , D. Tytko , M. Kuzmina , D. Ponge , and P.P. Choi : Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces. Curr. Opin. Solid State Mater. Sci. 18(4), 253 (2014).

M. Tang , W.C. Carter , and R.M. Cannon : Grain boundary transitions in binary alloys. Phys. Rev. Lett. 97(7), 075502 (2006).

S.J. Dillon , M. Tang , W.C. Carter , and M.P. Harmer : Complexion: A new concept for kinetic engineering in materials science. Acta Mater. 55(18), 6208 (2007).

M. Baram , D. Chatain , and W.D. Kaplan : Nanometer-thick equilibrium films: The interface between thermodynamics and atomistics. Science 332(6026), 206 (2011).

D. Raabe , S. Sandlöbes , J. Millán , D. Ponge , H. Assadi , M. Herbig , and P.P. Choi : Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite. Acta Mater. 61(16), 6132 (2013).

W. Han , M.J. Demkowicz , N.A. Mara , E. Fu , S. Sinha , A.D. Rollett , Y. Wang , J.S. Carpenter , I.J. Beyerlein , and A. Misra : Design of radiation tolerant materials via interface engineering. Adv. Mater. 25(48), 6975 (2013).

P.R. Cantwell , M. Tang , S.J. Dillon , J. Luo , G.S. Rohrer , and M.P. Harmer : Grain boundary complexions. Acta Mater. 62, 1 (2014).

F. Baletto and R. Ferrando : Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys. 77(1), 371 (2005).

X. Dou , G. Li , and H. Lei : Kinetic versus thermodynamic control over growth process of electrodeposited Bi/BiSb superlattice nanowires. Nano Lett. 8(5), 1286 (2008).

J.J. Vajo : Influence of nano-confinement on the thermodynamics and dehydrogenation kinetics of metal hydrides. Curr. Opin. Solid State Mater. Sci. 15(2), 52 (2011).

T. Chookajorn , H.A. Murdoch , and C.A. Schuh : Design of stable nanocrystalline alloys. Science 337(6097), 951 (2012).

H.A. Murdoch and C.A. Schuh : Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta Mater. 61(6), 2121 (2013).

T. Chookajorn and C.A. Schuh : Thermodynamics of stable nanocrystalline alloys: A Monte Carlo analysis. Phys. Rev. B 89(6), 064102 (2014).

R. Kirchheim : Comment on “Unexplored topics and potentials of grain boundary engineering” by L.S. Shvindlerman and G. Gottstein. Scr. Mater. 55(10), 963 (2006).

Z.C. Cordero and C.A. Schuh : Phase strength effects on chemical mixing in extensively deformed alloys. Acta Mater. 82, 123 (2015).

D.C. Joy , A.D. Romig , and J. Goldstein : Principles of Analytical Electron Microscopy (Springer, New York, 1986).

G. Lorimer : Quantitative X-ray microanalysis of thin specimens in the transmission electron microscope; a review. Mineral. Mag. 51(359), 49 (1987).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 4
Total number of PDF views: 70 *
Loading metrics...

Abstract views

Total abstract views: 207 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th May 2017. This data will be updated every 24 hours.