Skip to main content

Dynamic responses of reactive metallic structures under thermal and mechanical ignitions

  • Haoyan Wei (a1) and Choong-Shik Yoo (a1)

We have studied dynamic thermo-mechano-chemical responses of reactive metallic systems, both in clouds of small oxygen-free particles (∼1–10 μm in diameter) produced by fracturing Zr-rich bulk metallic glass and in pure Zr metal foils (∼25 μm thin), under thermal (laser ablation or pulse electrical heating) and mechanical loadings. The mechanical fracture/fragmentation and fragments reactions were time resolved using an integrated set of fast six-channel optical pyrometer, high-speed microphotographic camera, and time- and angle-resolved synchrotron x-ray diffraction. These small-scale tabletop real-time experiments performed on or near surfaces of reactive metals provide fundamental data, in atomistic scales or of particle clouds, regarding fragmentation mechanics, combustion mechanisms and kinetics, and dynamics of energy release under thermal and mechanical loadings. We present the results of pure Zr and Zr-rich amorphous metals, not only signifying diversified combustion mechanisms depending on microstructures, particle sizes, oxygen pressure, and ignition conditions but also providing fundamental data that can be used to develop and validate thermochemical and mechanochemical models for reactive materials.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Yetter, R.A., Risha, G.A., and Son, S.F.: Metal particle combustion and nanotechnology. Proc. Combust. Inst. 32, 1819 (2009).
2.Dlott, D.D.: Thinking big (and small) about energetic materials. Mater. Sci. Technol. 22, 463 (2006).
3.Dreizin, E.L.: Metal-based reactive nanomaterials. Prog. Energy Combust. Sci. 35, 141 (2009).
4.Holian, B.L.: Molecular Dynamics Simulations of Detonation Phenomena (ITRI Press, McLean, VA, 2004).
5.Park, K., Lee, D., Rai, A., Mukherjee, D., and Zachariah, M.R.: Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry. J. Phys. Chem. B 109, 7290 (2005).
6.Granier, J.J. and Pantoya, M.L.: Laser ignition of nanocomposite thermites. Combust. Flame 138, 373 (2004).
7.Skinner, D., Olson, D., and Block-Bolten, A.: Electrostatic discharge ignition of energetic materials. Propellants Explos. Pyrotech. 23, 34 (1998).
8.Ewald, K.H., Anselmi-Tamburini, U., and Munir, Z.A.: Combustion of zirconium powders in oxygen. Mater. Sci. Eng., A 291, 118 (2000).
9.Gill, R.J., Badiola, C., and Dreizin, E.L.: Combustion times and emission profiles of micron-sized aluminum particles burning in different environments. Combust. Flame 157, 2015 (2010).
10.Trunov, M.A., Schoenitz, M., and Dreizin, E.L.: Ignition of aluminum powders under different experimental conditions. Propellants Explos. Pyrotech. 30, 36 (2005).
11.Huang, Y., Risha, G.A., Yang, V., and Yetter, R.A.: Effect of particle size on combustion of aluminum particle dust in air. Combust. Flame 156, 5 (2009).
12.Trunov, M.A., Schoenitz, M., and Dreizin, E.L.: Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles. Combust. Theor. Model. 10, 603 (2006).
13.Wei, H. and Yoo, C-S.: Kinetics of small single particle combustion of zirconium alloy. J. Appl. Phys. 111, 023506 (2012).
14.Dreizin, E.L.: Effect of phase changes on metal-particle combustion processes. Combust. Explo. Shock. 39, 681 (2003).
15.Trunov, M.A., Schoenitz, M., Zhu, X.Y., and Dreizin, E.L.: Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combust. Flame 140, 310 (2005).
16.Dreizin, E.L.: Phase changes in metal combustion. Prog. Energy Combust. Sci. 26, 57 (2000).
17.Molodetsky, I.E., Dreizin, E.L., and Law, C.K.: Evolution of particle temperature and internal composition for zirconium burning in air. Proc. Combust. Inst. 26, 1919 (1996).
18.Wei, H. and Yoo, C.S.: Dynamic structural and chemical responses of energetic solids. in Advances in Energetic Materials Research, edited by Manaa, M.R., Yoo, C.-S., Reed, E.J., and Strano, M.S. (Mater. Res. Soc. Symp. Proc. 1405, Warrendale, PA, 2012). mrsf11-1405-y02-01.
19.Yoo, C.S., Wei, H., Chen, J.-Y., Shen, G., Chow, P., and Xiao, Y.: Time- and angle-resolved x-ray diffraction to probe structural and chemical evolution during Al-Ni intermetallic reactions. Rev. Sci. Instrum. 82, 113901 (2011).
20.Trenkle, J.C., Koerner, L.J., Tate, M.W., Gruner, S.M., Weihs, T.P., and Hufnagel, T.C.: Phase transformations during rapid heating of Al/Ni multilayer foils. Appl. Phys. Lett. 93, 081903 (2008).
21.Trenkle, J.C., Koerner, L.J., Tate, M.W., Walker, N., Gruner, S.M., Weihs, T.P., and Hufnagel, T.C.: Time-resolved x-ray microdiffraction studies of phase transformations during rapidly propagating reactions in Al/Ni and Zr/Ni multilayer foils. J. Appl. Phys. 107, 113511 (2010).
22.Wei, H., Yoo, C.-S., Chen, J.-Y., and Shen, G.: Oxygen-diffusion limited metal combustions in Zr, Ti, and Fe foils: Time- and angle-resolved x-ray diffraction studies. J. Appl. Phys. 111, 063528 (2012).
23.Fadenberger, K., Gunduz, I.E., Tsotsos, C., Kokonou, M., Gravani, S., Brandstetter, S., Bergamaschi, A., Schmitt, B., Mayrhofer, P.H., Doumanidis, C.C., and Rebholz, C.: In situ observation of rapid reactions in nanoscale Ni-Al multilayer foils using synchrotron radiation. Appl. Phys. Lett. 97, 144101 (2010).
24.Haynes, W.M.: CRC Handbook of Chemistry and Physics, 92nd ed. (CRC Press, Boca Raton, FL, 2011).
25.Jiang, W.H., Liu, F.X., Liao, H.H., Choo, H., Liaw, P.K., Edwards, B.J., and Khomami, B.: Temperature increases caused by shear banding in as-cast and relaxed Zr-based bulk metallic glasses under compression. J. Mater. Res. 23, 2967 (2008).
26.Bruck, H.A., Rosakis, A.J., and Johnson, W.L.: The dynamic compressive behavior of beryllium bearing bulk metallic glasses. J. Mater. Res. 11, 503 (1996).
27.Gilbert, C.J., Ager, J.W., Schroeder, V., Ritchie, R.O., Lloyd, J.P., and Graham, J.R.: Light emission during fracture of a Zr-Ti-Ni-Cu-Be bulk metallic glass. Appl. Phys. Lett. 74, 3809 (1999).
28.Olsen, S.E. and Beckstead, M.W.: Burn time measurements of single aluminum particles in steam and CO2 mixtures. J. Propul. Power 12, 662 (1996).
29.Dreizin, E.L.: On the mechanism of asymmetric aluminum particle combustion. Combust. Flame 117, 841 (1999).
30.Rossi, S., Dreizin, E.L., and Law, C.K.: Combustion of aluminum particles in carbon dioxide. Combust. Sci. Technol. 164, 209 (2001).
31.Wei, H. and Yoo, C.S.: in preparation.
32.Kovalev, D., Shkiro, V., and Ponomarev, V.: Dynamics of phase formation during combustion of Zr and Hf in air. Int. J. Self Propag. High Temp. Synth. 16, 169 (2007).
33.ASM Alloy Phase Diagrams Center: Diagram No. 103569, 101191.
34.Arai, T. and Hirabayashi, M.: Oxygen ordering in the Zr-O alloy: A structural, calorimetric and resistometric study. J. Less-Common Met. 44, 291 (1976).
35.Arroyave, R., Kaufman, L., and Eagar, T.W.: Thermodynamic modeling of the Zr-O system. Calphad 26, 95 (2002).
36.Assovskiy, I.G., Kolesnikov-Svinarev, V.I., Kuzhnetsov, G.P., and Zhigalina, O.M.: Gravity effect in aluminum droplet ignition and combustion. In 5th International Microgravity Combustion Workshop, Cleveland, OH, 1999. Proceedings of the Fifth International Microgravity Combustion Workshop, NASA, May 18–20, 1999, Cleveland, OH; pp. 223–226.
37.Glassman, I.: Combustion, 3rd ed. (Academic Press, Inc., San Diego, CA, 1996).
38.Wu, W.F., Han, Z., and Li, Y.: Size-dependent “malleable-to-brittle” transition in a bulk metallic glass. Appl. Phys. Lett. 93, 061908 (2008).
39.Murali, P. and Ramamurty, U.: Embrittlement of a bulk metallic glass due to sub-Tg annealing. Acta Mater. 53, 1467 (2005).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed