Skip to main content
×
Home
    • Aa
    • Aa

Dynamic responses of reactive metallic structures under thermal and mechanical ignitions

  • Haoyan Wei (a1) and Choong-Shik Yoo (a1)
  • DOI: http://dx.doi.org/10.1557/jmr.2012.302
  • Published online: 28 September 2012
Abstract
Abstract

We have studied dynamic thermo-mechano-chemical responses of reactive metallic systems, both in clouds of small oxygen-free particles (∼1–10 μm in diameter) produced by fracturing Zr-rich bulk metallic glass and in pure Zr metal foils (∼25 μm thin), under thermal (laser ablation or pulse electrical heating) and mechanical loadings. The mechanical fracture/fragmentation and fragments reactions were time resolved using an integrated set of fast six-channel optical pyrometer, high-speed microphotographic camera, and time- and angle-resolved synchrotron x-ray diffraction. These small-scale tabletop real-time experiments performed on or near surfaces of reactive metals provide fundamental data, in atomistic scales or of particle clouds, regarding fragmentation mechanics, combustion mechanisms and kinetics, and dynamics of energy release under thermal and mechanical loadings. We present the results of pure Zr and Zr-rich amorphous metals, not only signifying diversified combustion mechanisms depending on microstructures, particle sizes, oxygen pressure, and ignition conditions but also providing fundamental data that can be used to develop and validate thermochemical and mechanochemical models for reactive materials.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: csyoo@wsu.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

R.A. Yetter , G.A. Risha , and S.F. Son : Metal particle combustion and nanotechnology. Proc. Combust. Inst. 32, 1819 (2009).

D.D. Dlott : Thinking big (and small) about energetic materials. Mater. Sci. Technol. 22, 463 (2006).

E.L. Dreizin : Metal-based reactive nanomaterials. Prog. Energy Combust. Sci. 35, 141 (2009).

K. Park , D. Lee , A. Rai , D. Mukherjee , and M.R. Zachariah : Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry. J. Phys. Chem. B 109, 7290 (2005).

J.J. Granier and M.L. Pantoya : Laser ignition of nanocomposite thermites. Combust. Flame 138, 373 (2004).

D. Skinner , D. Olson , and A. Block-Bolten : Electrostatic discharge ignition of energetic materials. Propellants Explos. Pyrotech. 23, 34 (1998).

K.H. Ewald , U. Anselmi-Tamburini , and Z.A. Munir : Combustion of zirconium powders in oxygen. Mater. Sci. Eng., A 291, 118 (2000).

R.J. Gill , C. Badiola , and E.L. Dreizin : Combustion times and emission profiles of micron-sized aluminum particles burning in different environments. Combust. Flame 157, 2015 (2010).

M.A. Trunov , M. Schoenitz , and E.L. Dreizin : Ignition of aluminum powders under different experimental conditions. Propellants Explos. Pyrotech. 30, 36 (2005).

Y. Huang , G.A. Risha , V. Yang , and R.A. Yetter : Effect of particle size on combustion of aluminum particle dust in air. Combust. Flame 156, 5 (2009).

M.A. Trunov , M. Schoenitz , and E.L. Dreizin : Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles. Combust. Theor. Model. 10, 603 (2006).

H. Wei and C-S. Yoo : Kinetics of small single particle combustion of zirconium alloy. J. Appl. Phys. 111, 023506 (2012).

E.L. Dreizin : Effect of phase changes on metal-particle combustion processes. Combust. Explo. Shock. 39, 681 (2003).

M.A. Trunov , M. Schoenitz , X.Y. Zhu , and E.L. Dreizin : Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combust. Flame 140, 310 (2005).

E.L. Dreizin : Phase changes in metal combustion. Prog. Energy Combust. Sci. 26, 57 (2000).

I.E. Molodetsky , E.L. Dreizin , and C.K. Law : Evolution of particle temperature and internal composition for zirconium burning in air. Proc. Combust. Inst. 26, 1919 (1996).

C.S. Yoo , H. Wei , J.-Y. Chen , G. Shen , P. Chow , and Y. Xiao : Time- and angle-resolved x-ray diffraction to probe structural and chemical evolution during Al-Ni intermetallic reactions. Rev. Sci. Instrum. 82, 113901 (2011).

J.C. Trenkle , L.J. Koerner , M.W. Tate , S.M. Gruner , T.P. Weihs , and T.C. Hufnagel : Phase transformations during rapid heating of Al/Ni multilayer foils. Appl. Phys. Lett. 93, 081903 (2008).

J.C. Trenkle , L.J. Koerner , M.W. Tate , N. Walker , S.M. Gruner , T.P. Weihs , and T.C. Hufnagel : Time-resolved x-ray microdiffraction studies of phase transformations during rapidly propagating reactions in Al/Ni and Zr/Ni multilayer foils. J. Appl. Phys. 107, 113511 (2010).

H. Wei , C.-S. Yoo , J.-Y. Chen , and G. Shen : Oxygen-diffusion limited metal combustions in Zr, Ti, and Fe foils: Time- and angle-resolved x-ray diffraction studies. J. Appl. Phys. 111, 063528 (2012).

K. Fadenberger , I.E. Gunduz , C. Tsotsos , M. Kokonou , S. Gravani , S. Brandstetter , A. Bergamaschi , B. Schmitt , P.H. Mayrhofer , C.C. Doumanidis , and C. Rebholz : In situ observation of rapid reactions in nanoscale Ni-Al multilayer foils using synchrotron radiation. Appl. Phys. Lett. 97, 144101 (2010).

C.J. Gilbert , J.W. Ager , V. Schroeder , R.O. Ritchie , J.P. Lloyd , and J.R. Graham : Light emission during fracture of a Zr-Ti-Ni-Cu-Be bulk metallic glass. Appl. Phys. Lett. 74, 3809 (1999).

S.E. Olsen and M.W. Beckstead : Burn time measurements of single aluminum particles in steam and CO2 mixtures. J. Propul. Power 12, 662 (1996).

E.L. Dreizin : On the mechanism of asymmetric aluminum particle combustion. Combust. Flame 117, 841 (1999).

S. Rossi , E.L. Dreizin , and C.K. Law : Combustion of aluminum particles in carbon dioxide. Combust. Sci. Technol. 164, 209 (2001).

D. Kovalev , V. Shkiro , and V. Ponomarev : Dynamics of phase formation during combustion of Zr and Hf in air. Int. J. Self Propag. High Temp. Synth. 16, 169 (2007).

T. Arai and M. Hirabayashi : Oxygen ordering in the Zr-O alloy: A structural, calorimetric and resistometric study. J. Less-Common Met. 44, 291 (1976).

R. Arroyave , L. Kaufman , and T.W. Eagar : Thermodynamic modeling of the Zr-O system. Calphad 26, 95 (2002).

I. Glassman : Combustion, 3rd ed. (Academic Press, Inc., San Diego, CA, 1996).

W.F. Wu , Z. Han , and Y. Li : Size-dependent “malleable-to-brittle” transition in a bulk metallic glass. Appl. Phys. Lett. 93, 061908 (2008).

P. Murali and U. Ramamurty : Embrittlement of a bulk metallic glass due to sub-Tg annealing. Acta Mater. 53, 1467 (2005).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: