Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-29T19:58:42.941Z Has data issue: false hasContentIssue false

Dynamic strain aging and serrated flow in MnO

Published online by Cambridge University Press:  03 March 2011

K. C. Goretta
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
J. L. Routbort
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
T. A. Bloom
Affiliation:
Department of Metallurgical and Materials Engineering, Illinois Institute of Technology, Chicago, Illinois 60616
Get access

Abstract

The effects of aging on the upper yield stress τup and serrated flow have been studied in MnO single crystals at 900 °C for oxygen partial pressures ρO2 of 10−11 and 10−7 Pa. Aging initially increases τup as a consequence of segregation of aliovalent impurities to dislocations for both ρO2 values. For long aging times and ρO2 = 10-11 Pa, serrated flow accompanied by solute softening is observed. The data fit predictions of a Portevin-Le Chatelier model for serrations, but with impurity atmospheres causing softening instead of hardening. This is believed to result from changes in local defect equilibria caused by segregation of impurities with valences greater than two to dislocations.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gooch, D. J. and Groves, G. W., Philos. Mag. 28, 623 (1973).CrossRefGoogle Scholar
2Srinivasan, M. and Stoebe, T. G., Mater. Sci. Eng. 12, 87 (1973).Google Scholar
3Routbort, J. L., Acta Metall. 27, 649 (1979).Google Scholar
4Routbort, J. L., Acta Metall. 30, 663 (1982).Google Scholar
5Dominguez-Rodriguez, A. and Castaing, J., Scr. Metall. 9, 551 (1975).Google Scholar
6Brindley, B. J. and Worthington, P. J., Metall. Rev. 15, 101 (1970).CrossRefGoogle Scholar
7Brown, M., Doctoral dissertation, Birmingham University, 1960.Google Scholar
8Goretta, K. C., Doctoral dissertation, Illinois Institute of Technology, 1986.Google Scholar
9Catlow, C. R. A., Mackrodt, W. C., Norgett, M. J., and Stone ham, A. M., Philos. Mag. 35, 177 (1977).CrossRefGoogle Scholar
10Routbort, J. L., in Defect Properties and Processing of High-Technology Nonmetallic Materials, edited by Crawford, J. M., Chen, Y., and Sibley, W. A. (North-Holland, New York, 1984), pp. 9399.Google Scholar
11Mitchell, T . E., Hobbs, L. W., Heuer, A. H., Castaing, J., Cadoz, J., and Philibert, J., Acta Metall. 27, 1677 (1979).CrossRefGoogle Scholar
12Peterson, N. L. and Chen, W. K., J. Phys. Chem. Solids 43, 29 (1982).Google Scholar
13Dieckmann, R. (private communication, 1985).Google Scholar
14Kocks, U. F., Cook, R. E., and Mulford, R. A., Acta Metall. 33, 623 (1985).CrossRefGoogle Scholar
15Goretta, K. C., Routbort, J. L., and Peterson, N. L., Scr. Metall. 19, 1361 (1985).CrossRefGoogle Scholar
16Cottrell, A. H., Philos. Mag. 44, 829 (1953).Google Scholar
17Dieckmann, R., Solid State Ionics 12, 1 (1984).Google Scholar
18Mulford, R. A. and Kocks, U. F., Acta Metall. 27, 1125 (1979).CrossRefGoogle Scholar
19Wicks, B. J. and Lewis, M. H., Phys. Status Solidi A 6, 281 (1971).Google Scholar
20Schwarz, R. B. and Funk, L. L., Acta Metall. 33, 295 (1985).CrossRefGoogle Scholar