Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T06:10:34.578Z Has data issue: false hasContentIssue false

Easy preparation of SnO2@carbon composite nanofibers with improved lithium ion storage properties

Published online by Cambridge University Press:  31 January 2011

Zunxian Yang
Affiliation:
Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia; and Institute of Micro/Nano-Sensors & Solar Energy Cells, Fuzhou University, Fuzhou 350108, People's Republic of China
Guodong Du
Affiliation:
Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia
Zaiping Guo*
Affiliation:
Institute for Superconducting and Electronic Materials, and School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
Xuebin Yu
Affiliation:
Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia; and Department of Materials Science, Fudan University, Shanghai 200433, People's Republic of China
Zhixin Chen
Affiliation:
School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, Wollongong NSW 2522, Australia
Peng Zhang
Affiliation:
Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia
Guonan Chen
Affiliation:
Key Laboratory of Analysis and Detection Technology for Food Safety of the Ministry of Education, Fuzhou University, Fuzhou 350002, People's Republic of China
Huakun Liu
Affiliation:
Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia
*
a)Address all correspondence to this author. e-mail: zguo@uow.edu.au
Get access

Abstract

SnO2@carbon nanofibers were synthesized by a combination of electrospinning and subsequent thermal treatments in air and then in argon to demonstrate their potential use as an anode material in lithium ion battery applications. The as-prepared SnO2@carbon nanofibers consist of SnO2 nanoparticles/nanocrystals encapsulated in a carbon matrix and contain many mesopores. Because of the charge pathways, both for the electrons and the lithium ions, and the buffering function provided by both the carbon encapsulating the SnO2 nanoparticles and the mesopores, which tends to alleviate the volumetric effects during the charge/discharge cycles, the nanofibers display a greatly improved reversible capacity of 420 mAh/g after 100 cycles at a constant current of 100 mA/g, and a sharply enhanced reversible capacity at higher rates (0.5, 1, and 2 C) compared with pure SnO2 nanofibers, which makes it a promising anode material for lithium ion batteries.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nam, K.T., Kim, D-W., Yoo, P.J., Chiang, C-Y., Meethong, N., Hammond, P.T., Chiang, Y-M., Belcher, M.A.Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885 (2006)CrossRefGoogle ScholarPubMed
2.Ortiz, G.F., Hanzu, I., Djenizian, T., Lavela, P., Tirado, J.L., Knauth, P.Alternative Li-ion battery electrode based on self-organized titania nanotubes. Chem. Mater. 21, 63 (2009)CrossRefGoogle Scholar
3.Lee, S-H., Kim, Y-H., Deshpande, R., Parilla, P.A., Whitney, E., Gillaspie, D.T., Jones, K.M., Mahan, A.H., Zhang, S., Dillon, A.C.Reversible lithium-ion insertion in molybdenum oxide nanoparticles. Adv. Mater. 20, 3627 (2008)CrossRefGoogle Scholar
4.Ortiz, G.F., Hanzu, I., Knauth, P., Lavela, P., Tirado, J.L., Djenizian, T.TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries. Electrochim. Acta 54, 4262 (2009)CrossRefGoogle Scholar
5.Wang, Y., Lee, J.Y., Zeng, H.C.Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem. Mater. 17, 3899 (2005)CrossRefGoogle Scholar
6.Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y., Miyasaka, T.Tin-based amorphous oxide: A high-capacity lithium-ion–storage material. Science 276, 1395 (1997)CrossRefGoogle Scholar
7.Tirado, J.L., Santamría, R., Ortiz, G.F., Menéndez, R., Lavela, P., Jiménez-Mateos, J.M., Gómez García, F.J., Concheso, A., Alcántara, R.Tin–carbon composites as anodic material in Li-ion batteries obtained by co-pyrolysis of petroleum vacuum residue and SnO2. Carbon 45, 1396 (2007)CrossRefGoogle Scholar
8.Park, M-S., Kang, Y-M., Kim, J-H., Wang, G-X., Dou, S-X., Liu, H-K.Effects of low-temperature carbon encapsulation on the electrochemical performance of SnO2 nanopowders. Carbon 46, 35 (2008)CrossRefGoogle Scholar
9.Wang, Y., Zeng, H.C., Lee, J.Y.Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv. Mater. 18, 645 (2006)CrossRefGoogle Scholar
10.Liu, J., Li, Y., Huang, X., Ding, R., Hu, Y., Jiang, J., Liao, L.Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. J. Mater. Chem. 19, 1859 (2009)CrossRefGoogle Scholar
11.Kim, H., Cho, J.Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials. J. Mater. Chem. 18, 771 (2008)CrossRefGoogle Scholar
12.Chen, G., Wang, Z., Xia, D.One-pot synthesis of carbon nanotube@SnO2–Au coaxial nanocable for lithium-ion batteries with high rate capability. Chem. Mater. 20, 6951 (2008)CrossRefGoogle Scholar
13.Zhang, H-X., Feng, C., Zhai, Y-C., Jiang, K-L., Li, Q-Q., Fan, S-S.Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: A novel binder-free and high-capacity anode material for lithium-ion batteries. Adv. Mater. 21, 2299 (2009)CrossRefGoogle Scholar
14.Wang, Z., Chen, G., Xia, D.Coating of multi-walled carbon nanotube with SnO2 films of controlled thickness and its application for Li-ion battery. J. Power Sources 184, 432 (2008)CrossRefGoogle Scholar
15.Du, N., Zhang, H., Chen, B., Ma, X., Huang, X., Tu, J., Yang, D.Synthesis of polycrystalline SnO2 nanotubes on carbon nanotube template for anode material of lithium-ion battery. Mater. Res. Bull. 44, 211 (2009)CrossRefGoogle Scholar
16.Zheng, M., Li, G., Zhang, X., Huang, S., Lei, Y., Zhang, L.Fabrication and structural characterization of large-scale uniform SnO2 nanowire array embedded in anodic alumina membrane. Chem. Mater. 13, 3859 (2001)CrossRefGoogle Scholar
17.Park, M-S., Wang, G-X., Kang, Y-M., Wexler, D., Dou, S-X., Liu, H-K.Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. Int. Ed. 46, 750 (2007)CrossRefGoogle ScholarPubMed
18.Meduri, P., Pendyala, C., Kumar, V., Sumanasekera, G.U., Sunkara, M.K.Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. Nano Lett. 9, 612 (2009)CrossRefGoogle ScholarPubMed
19.Park, M-S., Kang, Y-M., Dou, S-X., Liu, H-K.Reduction-free synthesis of carbon-encapsulated SnO2 nanowires and their superiority in electrochemical performance. J. Phys. Chem. C 112, 11286 (2008)CrossRefGoogle Scholar
20.Lou, X.W., Deng, D., Lee, J.Y., Archer, L.A.Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties. Chem. Mater. 20, 6562 (2008)CrossRefGoogle Scholar
21.Demir-Cakan, R., Hu, Y-S., Antonietti, M., Maier, J., Titirici, M-M.Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem. Mater. 20, 1227 (2008)CrossRefGoogle Scholar
22.Ying, Z., Wan, Q., Cao, H., Song, Z.T., Feng, S.L.Characterization of SnO2 nanowires as an anode material for Li-ion batteries. Appl. Phys. Lett. 87, 113108 (2005)CrossRefGoogle Scholar
23.Li, D., Xia, Y.Electrospinning of nanofibers: Reinventing the wheel≟ Adv. Mater. 16, 1151 (2004)CrossRefGoogle Scholar
24.Kim, C., Yang, K.S., Kojima, M., Yoshida, K., Kim, Y.J., Kim, Y.A., Endo, M.Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv. Funct. Mater. 16, 2393 (2006)CrossRefGoogle Scholar
25.Ji, L., Zhang, X.Electrospun carbon nanofibers containing silicon particles as an energy-storage medium. Carbon 47, 3219 (2009)CrossRefGoogle Scholar
26.Yang, Z., Du, Gu., Feng, C., Li, S., Chen, Z., Zhang, P., Guo, Z., Yu, X., Chen, G., Liu, H.Synthesis of uniform polycrystalline tin dioxide nanofibers and electrochemical application in lithium ion batteries. Nanotechnology (under review)Google Scholar
27.Lou, X.W., Chen, J.S., Chen, P., Archer, L.A.One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties. Chem. Mater. 21, 2868 (2009)CrossRefGoogle Scholar
28.Wang, G., Ji, Y., Huang, X., Yang, X., Gouma, P-I., Dudley, M.Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing. J. Phys. Chem. B 110, 23777 (2006)CrossRefGoogle ScholarPubMed
29.Ningthoujam, R.S., Kulshreshtha, S.K.Nanocrystalline SnO2 from thermal decomposition of tin citrate crystal: Luminescence and Raman studies. Mater. Res. Bull. 44, 57 (2009)CrossRefGoogle Scholar
30.Wang, J.X., Liu, D.F., Yan, X.Q., Yuan, H.J., Ci, L.J., Zhou, Z.P., Gao, Y., Song, L., Liu, L.F., Zhou, W.Y., Wang, G., Xie, S.S.Growth of SnO2 nanowires with uniform branched structures. Solid State Commun. 130, 89 (2004)CrossRefGoogle Scholar
31.Moon, T., Kim, C., Hwang, S-T., Park, B.Electrochemical properties of disordered-carbon-coated SnO2 nanoparticles for Li rechargeable batteries. Electrochem. Solid-State Lett. 9, (9)A408 (2006)CrossRefGoogle Scholar
32.Su, F., Zhao, X.S., Wang, Y., Zeng, J., Zhou, Z., Lee, J.Y.Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications. J. Phys. Chem. B 109, 20200 (2005)CrossRefGoogle ScholarPubMed
33.Fu, Y., Ma, R., Shu, Y., Cao, Z., Ma, X.Preparation and characterization of SnO2/carbon nanotube composite for lithium ion battery applications. Mater. Lett. 63, 1946 (2009)CrossRefGoogle Scholar
35.Lee, S.H., Mathews, M., Toghiani, H., Wipf, D.O., Pittman, C.U.Fabrication of carbon-encapsulated mono- and bimetallic (Sn and Sn/Sb alloy) nanorods: Potential lithium-ion battery anode materials. Chem. Mater. 21, 2306 (2009)CrossRefGoogle Scholar
36.Wang, Y., Djerdj, I., Smarsly, B., Antonietti, M.Antimony-doped SnO2 nanopowders with high crystallinity for lithium-ion battery electrode. Chem. Mater. 21, 3202 (2009)CrossRefGoogle Scholar
37.Sharma, N., Plévert, J., Rao, S., Chowdari, B.V.R., White, T.J.Tin oxides with hollandite structure as anodes for lithium ion batteries. Chem. Mater. 17, 4700 (2005)CrossRefGoogle Scholar
38.Yu, Y., Gu, L., Wang, C., Dhanabalan, A., Aken, P.A.V., Maier, J.Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew. Chem. Int. Ed. 48, 6485 (2009)CrossRefGoogle ScholarPubMed