Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-28T12:32:05.778Z Has data issue: false hasContentIssue false

Effect of Ag-particulate addition on processing, microstructure, and properties of MgO-whisker-reinforced bulk BPSCCO high-Tc superconductor composites

Published online by Cambridge University Press:  31 January 2011

Y. S. Yuan
Affiliation:
Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204–4792
M. S. Wong
Affiliation:
Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204–4792
S. S. Wang
Affiliation:
Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204–4792
Get access

Abstract

In associated papers [Y. S. Yuan, M. S. Wong, and S. S. Wang, J. Mater. Res. 11, 8–17 (1996); J. Mater. Res. (1996, in press)] it has been shown that weak thermo-mechanical properties of a bulk monolithic high-Tc superconductor (HTS) can be improved by introducing strong ceramic whiskers into the HTS ceramic materials. In this paper, we report a further study of incorporating Ag particulates, (Ag)p, in a bulk monolithic BPSCCO and in the MgO-whisker reinforced BPSCCO composite. Effects of the (Ag)p addition on processing, microstructure, and superconducting and mechanical properties of the bulk monolithic BPSCCO and the (MgO)w/BPSCCO composite are investigated. The results indicate that the highly ductile Ag particulates promote densification of the BPSCCO matrix phase in the composite during hot pressing. The microstructure of the HTS composite with the (Ag)p addition is similar to that in the HTS material without the (Ag)p. The (MgO)w/BPSCCO composite with 10% (by weight) Ag particulates has been shown to possess excellent superconducting properties. The (Ag)p addition to both the monolithic BPSCCO and the (MgO)w/BPSCCO is found to increase appreciably their fracture toughnesses, but has little effects on mechanical strengths of the materials. Quantitative relationships have been established among solid-state processing variables, HTS phase developments, microstructures, and superconducting and mechanical properties of the (Ag)p/BPSCCO and the (MgO)w/(Ag)p/BPSCCO HTS composites.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yuan, Y. S., Wong, M. S., and Wang, S. S., J. Mater. Res. 11, 817 (1996).CrossRefGoogle Scholar
2.Yuan, Y. S., Wong, M. S., and Wang, S. S., J. Mater. Res. (1996, in press).Google Scholar
3.Tanaka, S., in Phenomenology and Applications of High-Temperature Superconductors, edited by Bedell, K. S., Meltzer, M., Schrieffer, J. R., and Doniach, S. (Addison-Wesley Publishing Company, Reading, MA, 1992).Google Scholar
4.Moon, F. C. and Chang, P. Z., Appl. Phys. Lett. 56, 397399 (1990).CrossRefGoogle Scholar
5.Dorri, B., Herd, K., Laskaris, E. T., Tkaczyk, J.E., and Lay, K. W., IEEE Trans. Magn. 27, 18581860 (1991).CrossRefGoogle Scholar
6.Goyal, A., Funkenbusch, P. D., Kroeger, D. M., and Burns, S. J., J. Appl. Phys. 71, 23632367 (1992).CrossRefGoogle Scholar
7.Ihm, M. K., Powell, B. R., and Bloink, R. L., J. Mater. Sci. 25, 16641674 (1990).CrossRefGoogle Scholar
8.Soylu, B., Adamopoulos, N., Glowacka, D. M., and Evetts, J.E., Appl. Phys. Lett. 60, 31833185 (1992).CrossRefGoogle Scholar
9.Wong, M.S., Miyase, A., Yuan, Y.S., and Wang, S.S., J. Am. Ceram. Soc. 77 (11), 28332840 (1994).CrossRefGoogle Scholar
10.Miyase, A., Yuan, Y. S., Wong, M. S., Schon, J.S., and Wang, S.S., Supercond. Sci. Technol. 8, 626637 (1995).CrossRefGoogle Scholar
11.Yuan, Y. S., Wong, M. S., and Wang, S. S., J. Mater. Res. 11, 1827 (1996).CrossRefGoogle Scholar
12.Yuan, Y. S., Wong, M.S., and Wang, S. S., Physica C 250, 247255 (1995).CrossRefGoogle Scholar
13.Lee, D. F., Ph. D. Dissertation, University of Houston (1992).Google Scholar
14.Singh, J. P., Leu, H. J., Poeppel, R. B., Van Voorhees, E., Goudey, G. T., Winsley, K., and Shi, D., J. Appl. Phys. 66, 31543158 (1989).CrossRefGoogle Scholar
15.Yeh, F. and White, K. W., J. Appl. Phys. 70, 49894994 (1991).CrossRefGoogle Scholar
16.Yamada, Y., Obst, B., and Flukiger, R., Supercond. Sci. Technol. 4, 165171 (1991).CrossRefGoogle Scholar
17.Haldar, P. and Motowidlo, L., J. Metals 44, 5458 (1992).Google Scholar
18.Imanaka, N., Saito, F., Imai, H., and Adachi, G. Y., Jpn. J. Appl. Phys. 28, L580582 (1989).CrossRefGoogle Scholar
19.Hayashi, Y., Kogure, H., and Gondo, Y., Jpn. J. Appl. Phys. 28, L21822184 (1989).CrossRefGoogle Scholar
20.Sarkar, A. K., Maartense, I., and Peterson, T. L., J. Mater. Res. 7, 16721678 (1992).CrossRefGoogle Scholar
21.Polonka, J., Xu, M., Li, Q., Goldman, A. L., and Finnemore, D. K., Appl. Phys. Lett. 59, 36403642 (1991).CrossRefGoogle Scholar