Skip to main content Accesibility Help
×
×
Home

The Effect of Electrolyte Composition on the Fabrication of Self-Organized Titanium Oxide Nanotube Arrays by Anodic Oxidation

  • Qingyun Cai (a1), Maggie Paulose (a2), Oomman K. Varghese (a3) and Craig A. Grimes (a3)
Abstract

We report on the fabrication of self-organized titanium oxide nanotube arrays of enhanced surface area prepared by anodic oxidation of a pure titanium sheet in electrolyte solutions containing potassium fluoride (KF) or sodium fluoride (NaF). The effects of electrolyte composition and concentration, solution pH, and the anodic potential on the formation of nanotubes and dimensions of the resulting nanotubes are detailed. Although nanotube arrays of length greater than 500 nm are not possible with hydrofluoric acid containing electrolytes [G.K. Mor, O.K. Varghese, M. Paulose,N. Mukherjee, C.A. Grimes, J. Mater. Res. 18, 2588 (2003)], by adjusting the pH of a KF containing electrolyte to 4.5 using additives such as sulfuric acid, sodium hydroxide, sodium hydrogen sulfate, and/or citric acid, we could increase the length of the nanotube-array to approximately 4.4 μm, an order of magnitude increase in length. The as-prepared nanotubes are composed of amorphous titanium oxide. Independent of the electrolyte composition, crystallization of the nanotubes to anatase phase occurred at temperatures ⩾280 °C. Rutile formation occurred at the nanotube-Ti substrate interface at temperatures near 480 °C. It appears geometry constraints imposed by the nanotube walls inhibit anatase to rutile transformation. No disintegration of the nanotube array structure is observed at temperatures as high as 580 °C. The excellent structural and crystal phase stability of these nanotubes make them promising for both low- and high-temperature applications.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: cgrimes@engr.psu.edu
References
Hide All
1Varghese, O.K., Gong, D.W., Paulose, M., Grimes, C.A. and Dickey, E.C.: Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 18, 156 (2003).
2Zwilling, V., Darque-Ceretti, E., Boutry-Forveille, A., David, D., Perrin, M.Y. and Aucouturier, M.: Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf. Interface Anal. 27, 629 (1999).
3Mor, G.K., Carvalho, M.A., Varghese, O.K., Pishko, M.V. and Grimes, C.A.: A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 19, 628 (2004).
4Varghese, O.K., Gong, D., Paulose, M., Ong, K.G. and Grimes, C.A.: Hydrogen sensing using titania nanotubes. Sens. Actuators B 93, 338 (2003).
5Varghese, O.K., Gong, D., Paulose, M., Ong, K.G., Dickey, E.C. and Grimes, C.A.: Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater. 15, 624 (2003).
6Beranek, R., Hildebrand, H. and Schmuki, P.: Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid State Lett. 6, B12 (2003).
7Mor, G.K., Varghese, O.K., Paulose, M., Mukherjee, N. and Grimes, C.A.: Fabrication of tapered, conical-shaped titania nanotubes. J. Mater. Res. 18, 2588 (2003).
8Yang, B.C., Uchida, M., Kim, H.M., Zhang, X.D. and Kokubo, T.: Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25, 1003 (2004).
9Sul, Y.T., Johansson, C.B., Jeong, Y. and Albrektsson, T.: The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med. Eng. Phys. 23, 329 (2001).
10Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z. and Dickey, E.C.: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 (2001).
11Varghese, O.K., Mor, G.K., Grimes, C.A., Paulose, M. and Mukherjee, N.: A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. J. Nanosci. Nanotech. 4, 733 (2004).
12Adachi, M., Murata, Y., Okada, I. and Yoshikawa, S.: Formation of titania nanotubes and applications for dye-sensitized solar cells. J. Electrochem. Soc. 150, G488 (2003).
13Giavaresi, G., Giardino, R., Ambrosio, L., Battiston, G., Gerbasi, R., Fini, M., Rimondini, L. and Torricelli, R.: In vitro biocompatibility of titanium oxide for prosthetic devices nanostructured by low pressure metal-organic chemical vapor deposition. Int. J. Artif. Organs 26, 774 (2003).
14Jang, H.D., Kim, S.K. and Kim, S.J.: Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J. Nanopart. Res. 3, 141 (2001).
15Rodriguez, R., Kim, K. and Ong, J.L.: In vitro osteoblast response to anodized titanium and anodized titanium followed by hydrothermal treatment. J. Biomed. Mater. Res. A 65, 352 (2003).
16Zinger, O., Chauvy, P.F. and Landolt, D.: Scale-resolved electrochemical surface structuring of titanium for biological applications. J. Electrochem. Soc. 150, B495 (2003).
17Gouma, P.I. and Mills, M.J.: Anatase-to-rutile transformation in titania powders. J. Am. Ceram. Soc. 84, 619 (2001).
18Zhang, H. and Banfield, J.F.: Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation. J. Mater. Res. 15, 437 (2000).
19Kumar, K-N.P., Keizer, K., Burggraaf, A.J., Okubo, T. and Nagamoto, H.: Textural evolution and phase transformation in titania mmbranes: Part 2. Supported membranes. J. Mater. Chem. 3, 1151 (1993).
20Ohya, Y., Saiki, H., Tanaka, T. and Takahashi, Y.: Microstructure of TiO2 and ZnO films fabricated by sol-gel method. J. Am. Ceram. Soc. 79, 825 (1996).
21Hoffmann, M.R., Martin, S.T., Choi, W. and Bahnemannt, D.W.: Environmental applications of semiconductor photcatalysis. Chem. Rev. 95, 69 (1995).
22Fox, M.A. and Dulay, M.T.: Heterogeneous photocatalysis. Chem. Rev. 93, 341 (1993).
23Gratzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed