Skip to main content
×
×
Home

Effect of Fe on microstructures and mechanical properties of an Al–Mg–Si–Cu–Cr–Zr alloy prepared by low frequency electromagnetic casting

  • Yi Meng (a1), Jian-zhong Cui (a2) and Zhi-hao Zhao (a2)
Abstract

The effects of different Fe contents (0.168, 0.356 and 0.601 wt%) on microstructures and mechanical properties of the Al–1.6Mg–1.2Si–1.1Cu–0.15Cr–0.15Zr (all in wt%) alloys prepared by low frequency electromagnetic casting process were investigated in the process of solidification, hot extrusion, solid solution and aging treatments. The results show that the increase of Fe content promotes the formation of feathery grains in the process of solidification and the precipitation of another important strengthening phase Q′ with small size. Additionally, it also results in no recrystallization even after solid solution at a high temperature of 550 °C, which is because of the increase number of elliptical shaped and fine DO22-Al3Zr dispersoids (∼70 nm long and ∼35 nm wide) and the spherical or elliptical shaped Fe-containing phases. When Fe content of the alloy increases to 0.356 wt%, both the ultimate tensile strength and yield strength of the alloy-T6 increase by more than 60 MPa and with little cost of ductility.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: mengyi@ncut.edu.cn
Footnotes
Hide All

Contributing Editor: Jürgen Eckert

Footnotes
References
Hide All
1. Zhong H., Rometsch P.A., Cao L.F., and Estrin Y.: The influence of Mg/Si ratio and Cu content on the stretch formability of 6xxx aluminium alloys. Mater. Sci. Eng., A 651, 688 (2016).
2. Eskin D.G., Massardier V., and Merle P.: A study of high-temperature precipitation in Al–Mg–Si alloys with an excess of silicon. J. Mater. Sci. 34, 811 (1999).
3. Murayama M., Hono K., Miao W.F., and Laughlin D.E.: The effect of Cu additions on the precipitation kinetics in an Al–Mg–Si alloy with excess Si. Metall. Mater. Trans. A 32, 239 (2001).
4. Zhen L., Fei W.D., Kang S.B., and Kim H.W.: Precipitation behaviour of Al–Mg–Si alloys with high silicon content. J. Mater. Sci. 32, 1895 (1997).
5. Miao W.F. and Laughlin D.E.: Effects of Cu content and preaging on precipitation characteristics in aluminum alloy 6022. Metall. Mater. Trans. A 31, 361 (2000).
6. Imatsuda K., Uetani Y., Sato T., and Ikeno S.: Metastable phases in an Al–Mg–Si alloy containing copper. Metall. Mater. Trans. A 32, 1293 (2001).
7. Weatherly G.C., Perovic A., Mukhopadhyay N.K., Lloyd D.J., and Perovic D.D.: The precipitation of the Q phase in an AA6111 alloy. Metall. Mater. Trans. A 32, 213 (2001).
8. Lodgaard L. and Ryum N.: Precipitation of dispersoids containing Mn and/or Cr in Al–Mg–Si alloys. Mater. Sci. Eng., A 283(1–2), 144 (2000).
9. Han Y., Ma K., Li L., Chen W., and Nagaumi H.: Study on microstructure and mechanical properties of Al–Mg–Si–Cu alloy with high manganese content. Mater. Des. 39, 418 (2012).
10. Cabibbo M. and Evangelista E.: A TEM study of the combined effect of severe plastic deformation and (Zr), (Sc + Zr)-containing dispersoids on an Al–Mg–Si alloy. J. Mater. Sci. 41, 5329 (2006).
11. Clouet E., Barbu A., Laé L., and Martin G.: Precipitation kinetics of Al3Zr and Al3Sc in aluminum alloys modeled with cluster dynamics. Acta Mater. 53(8), 2313 (2005).
12. Zhang Y.J., Ma N.H., Yi H.Z., Li S.C., and Wang H.W.: Effect of Fe on grain refinement of commercial purity aluminum. Mater. Des. 27(9), 794 (2006).
13. Zhang Y.J., Wang H.W., Ma N.H., and Li X.F.: Effect of Fe on grain refining of pure aluminum refined by Al–5Ti–B master alloy. Mater. Lett. 59(27), 3398 (2005).
14. Yi J.Z., Gao Y.X., Lee P.D., and Lindley T.C.: Effect of Fe-content on fatigue crack initiation and propagation in a cast aluminum–silicon alloy A356-T6. Mater. Sci. Eng., A 386(1–2), 396 (2004).
15. Crepeau P.N.: Effect of iron in Al–Si casting alloys: A critical review. Trans. Am. Foundrymen’s Assoc. 103, 361 (1995).
16. Kobayashi T.: Strength and fracture of aluminum alloys. Mater. Sci. Eng., A 280(1), 8 (2000).
17. Bergsma S.C., Kassner M.E., Li X., and Wall M.A.: Strengthening in the new aluminum alloy AA6069. Mater. Sci. Eng., A 254(1–2), 112 (1998).
18. Bergsma S.C., Kassner M.E., Li X., Delos-Reyes M.A., and Hayes T.A.: The optimized mechanical properties of the new aluminum alloy AA6069. J. Mater. Eng. Perform. 5, 111 (1996).
19. Bergsma S.C. and Kassner M.E.: The new aluminum alloy AA6069. Mater. Sci. Forum 217–222, 1801 (1996).
20. Meng Y., Cui J.Z., Zhao Z.H., and He L.Z.: Effect of Zr on microstructures and mechanical properties of an Al–Mg–Si–Cu–Cr alloy prepared by low frequency electromagnetic casting. Mater. Charact. 92, 138 (2014).
21. Henry S., Jarry P., and Rappaz M.: 〈110〉 dendrite growth in aluminum feathery grains. Metall. Mater. Trans. A 29, 2807 (1998).
22. Turchin A.N., Zuijderwijk M., Pool J., Eskin D.G., and Katgerman L.: Feathery grain growth during solidification under forced flow conditions. Acta Mater. 55(11), 3795 (2007).
23. Henry S., Minghetti T., and Rappaz M.: Dendrite growth morphologies in aluminium alloys. Acta Mater. 46(18), 6431 (1998).
24. Kumar S. and O’Reilly K.A.Q.: Influence of Al grain structure on Fe bearing intermetallics during DC casting of an Al–Mg–Si alloy. Mater. Charact. 120, 311 (2016).
25. Kumar S., Grant P.S., and O’Reilly K.A.Q.: Fe bearing intermetallic phase formation in a wrought Al–Mg–Si alloy. Trans. Indian Inst. Met. 65(6), 533 (2012).
26. Kumar S., Grant P.S., and O’Reilly K.A.Q.: Evolution of Fe bearing intermetallics during DC casting and homogenization of an Al–Mg–Si Al alloy. Metall. Mater. Trans. A 47, 3000 (2016).
27. Verma A., Kumar S., Grant P.S., and O’Reilly K.A.Q.: Influence of cooling rate on the Fe intermetallic formation in an AA6063 Al alloy. J. Alloys Compd. 555, 274 (2013).
28. Zhao Q.R., Qian Z., Cui X.L., Wu Y.Y., and Liu X.F.: Influences of Fe, Si and homogenization on electrical conductivity and mechanical properties of dilute Al–Mg–Si alloy. J. Alloys Compd. 666, 50 (2016).
29. Chen J.H., Costan E., Van Huis M.A., Xu Q., and Zanbergen H.W.: Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys. Science 312(5772), 416 (2006).
30. Yassar R.S., Field D.P., and Weiland H.: The effect of predeformation on the β′ and β′ precipitates and the role of Q′ phase in an Al–Mg–Si alloy: AA6022. Scr. Mater. 53(3), 299 (2005).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 45 *
Loading metrics...

Abstract views

Total abstract views: 198 *
Loading metrics...

* Views captured on Cambridge Core between 10th May 2017 - 17th January 2018. This data will be updated every 24 hours.