Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-17T18:05:22.432Z Has data issue: false hasContentIssue false

Effect of hydrogen dilution on electronic properties of a-SiHx films deposited by low-frequency plasma

Published online by Cambridge University Press:  31 January 2011

A. I. Kosarev
Affiliation:
National Institute for Astrophysics, Optics and Electronics, Apdo. Postal 51y216, Puebla 7200, Mexico
A. J. Torres
Affiliation:
National Institute for Astrophysics, Optics and Electronics, Apdo. Postal 51y216, Puebla 7200, Mexico
C. Zuniga
Affiliation:
National Institute for Astrophysics, Optics and Electronics, Apdo. Postal 51y216, Puebla 7200, Mexico
A. S. Abramov
Affiliation:
A.F. Ioffe Physico-Technical Institute, St. Petersburg 194021, Russia
P. Rosales
Affiliation:
National Institute for Astrophysics, Optics and Electronics, Apdo. Postal 51y216, Puebla 7200, Mexico
A. Sibaja
Affiliation:
National Institute for Astrophysics, Optics and Electronics, Apdo. Postal 51y216, Puebla 7200, Mexico
Get access

Abstract

The effect of hydrogen dilution during plasma deposition on hydrogen incorporation and the optical and electrical properties of a-SiHx films were studied. The films were grown in capacitive low-frequency (f = 10 and 110 kHz) discharge in SiH4 diluted with H2, varying the ratio RH of the gases H2/SiH4 from RH = 0 to 40. The optical absorption coefficient and optical bandgap were changed with RH. Si–H bonding, studied by infrared spectroscopy, depended on RH. Hydrogen concentration in the films estimated from infrared spectra was in the range 20–30%. We observed the significant effect of RH on the temperature dependence of conductivity σ(T) and on the subgap absorption spectra measured by the constant photocurrent method. The reduction of subgap absorption up to 1.5 order of magnitude was observed with increasing RH.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Platz, R., Fisher, D., Dubail, S., and Shah, A., Sol. Energy Mater. Sol. Cells 46, 157 (1997).CrossRefGoogle Scholar
Nakata, Y., Sannomijya, H., Morigaki, S., Inove, Y., Nomoto, K., Yokota, A., Itoh, M., and Tsuji, T., Optoelectronics Devices and Technology 5, 209 (1990).Google Scholar
Sansonnes, L., Howling, A.A., Ballutaud, J., and Hollenstein, Ch., in 27th EPS Conf. On Contr. Fusion and Plasma Phys. (ECA Vol. 24B), pp. 12681271.Google Scholar
Korevaar, B.A., Andriaenssens, G.J., Smets, A.H.M., Kessels, V.M.M., Song, H-Z., Sanden, M.C.M. Van de, and Schram, D.C., J. Non-Cryst. Solids 266, 380 (2000).CrossRefGoogle Scholar
Budagyan, B.A., Aivazov, A.A., Sazonov, A. Yu., Popov, A.A., and Berdnikov, A.E., in Amorphous and Microcrystalline Silicon Technology, 1997, edited by Wagner, S., Hack, M., Schiff, E.A., Schrapp, R., and Shimizu, I. (Mat. Res. Soc. Symp. Proc. 467, Pittsburgh, PA, 1997), p. 585.Google Scholar
Swanepoel, R., J. Phys. E Sci. Instrum. 16, 1214 (1983).CrossRefGoogle Scholar
Swanepoel, R., J. Phys. E Sci. Instrum. 17, 896 (1984).CrossRefGoogle Scholar
Brodsky, M.H., Cardona, M., and Cuomo, J.C., Phys. Rev. B 16, 3556 (1977).CrossRefGoogle Scholar
Fang, C.J., Gruntz, K.L., Ley, L., Cardona, M., Demond, F.J., Muller, G., Kalbitzer, S., J. Non-Cryst. Solids 35–36, 255 (1980).CrossRefGoogle Scholar
Shanks, H., Fang, C.J., Ley, L., Cardona, M., Demond, F.J., and Kalbitzer, S., Phys. Status Solidi (b) 43, 100 (1980).Google Scholar
Vanecek, M., Kocka, J., Stuchlik, J., Kozisek, Z., Stika, O., and Triska, A., Sol. Energy Mater. 8, 411 (1983).CrossRefGoogle Scholar
Cardona, M., Phys. Status Solidi (b) 118, 463 (1983).CrossRefGoogle Scholar
Wagner, H., Butz, R., Backes, U., and Bruchmann, D., Solid State Commun. 38, 1155 (1981).CrossRefGoogle Scholar
Cardona, M., Phys. Status Solidi (b) 118, 463 (1983).CrossRefGoogle Scholar
Cabarrocas, P. Roca i, Hamma, S., Sharma, S.N., Viera, G., Bertran, E., and Costa, J., J. Non-Cryst. Solids 227–230, 871 (1998).CrossRefGoogle Scholar
Beyer, W., in Tetrahedrally Bonded Amorphous Semiconductors, edited by Adler, D. and Fritsche, H. (NY, 1985), p. 129.CrossRefGoogle Scholar
Mott, N.F. and Davis, E.A., Electronic Processes in Non-Crystalline Materials (Clarendon Press, U.K. 1979).Google Scholar
Guha, S., Narasimhan, K.L., and Petruszko, S.M., J. Appl. Phys. 52, 859 (1981).CrossRefGoogle Scholar
Vallat-Sauvain, E., Kroll, U., Meier, J., Wyrsch, N., and Shah, A., J. Non-Cryst. Solids 266–269, 125 (2000).CrossRefGoogle Scholar
Platz, R., Hof, C., Wieder, S., Rech, B., Fischer, D., Shah, A., Payne, A., and Wagner, S., in Amorphous and Microcrystalline Silicon Technology–1988, edited by Wagner, S., Hack, M., Branz, H.M., Schrapp, R., and Shimizu, I. (Mat. Res. Soc. Symp. Proc. 507, Warrendale, PA, 1998), p. 565.Google Scholar
Budagian, B.G., Popov, A.A., Sazonov, A.Y., Bosyakov, M.N., Grunsky, D.M., and Zhuk, D.W., J. Non-Cryst. Solids 227–230, 39 (1998).CrossRefGoogle Scholar
Budagian, B.G., Sherchenkov, A.A., Stryahilev, D.A., Sazonov, A.Y., Radosel’sky, A.G., Chernomordic, V.D., Popov, A.A., Metselaar, J.W., J. Electrochem. Soc. 145(7), 2508 (1998).CrossRefGoogle Scholar
Budagian, B.G. and Aivazov, A.A., in Amorphous and Microcrystalline Silicon Technology–1988, edited by Wagner, S., Hack, M., Branz, H.M., Schrapp, R., and Shimizu, I. (Mat. Res. Soc. Symp. Proc. 507, Warrendale, PA, 1998), p. 493.Google Scholar
Schmitt, J.P.M., J. Non-Cryst. Solids 59–60, 649 (1983).CrossRefGoogle Scholar
Matsuda, A., Nomoto, K., Takeuchi, Y., Suzuki, A., Yuuki, A., and Perrin, J., Surf. Sci. 227, 50 (1990).CrossRefGoogle Scholar
Doyle, J.R., Doughty, D.A., and Callagher, A., J. Appl. Phys. 71, 4771 (1992).CrossRefGoogle Scholar
Veprek, S., Thin Solid Films 175, 129 (1989).CrossRefGoogle Scholar
Perrin, J., Bohm, Ch., Etemadi, R., and Loret, L., Plasma Sources Sci. Technol. 3, 252 (1994).CrossRefGoogle Scholar
Alben, R., Phys. Rev. B 11, 2271 (1975).CrossRefGoogle Scholar
Cabarrocas, P. Roca i, in Amorphous and Microcrystalline Silicon Technology–1998, edited by Wagner, S., Hack, M., Branz, H.M., Schrapp, R., and Shimizu, I. (Mat. Res. Soc. Symp. Proc. 507, Warrendale, PA, 1998), p. 855.Google Scholar
Pearce, C.R. J.M., Koval, R.J., Niu, X., Ferlauto, A.S., Koh, J., and Collins, R.W., in Amorphous and Heterogenous Silicon-Based Films–2002, edited by Abelson, J.R., Boyce, J.B., Cohen, J.D., Matsumura, H., and Robertson, J. (Mat. Res. Soc. Symp. Proc. 715, Warrendale, PA, 2002), p. A13.4.1.Google Scholar
Hamers, E.A.G., Morral, A. Fontcuberta i, Niikura, C., Brenot, R., and Cabarrocas, P. Roca i, J. Appl. Phys. 88, 3674 (2000).CrossRefGoogle Scholar
Kosarev, A.I., Smirnov, A.S., Abramov, A.S., Vinogradov, A.J., Yu, A., Ustavchikov, M.V. Shutov, J. Vac. Sci. Technol. A 15(2), 298 (1997).CrossRefGoogle Scholar
Liberman, M.A. and Lichtenberg, A.J., Principles of Plasma Discharges and Material Processing (J. Wiley and Sons, NY, 1994), p. 333.Google Scholar
Matsuda, A., Kaga, T., Tanaka, H., and Tanaka, K., Jpn. J. Appl. Phys. 23(8), L567 (1984).CrossRefGoogle Scholar
Shinozuma, M., Tochitani, G., Ohno, H., Tagashirs, H., and Nakahara, J., J. Appl. Phys. 66(1), 447 (1989).CrossRefGoogle Scholar