Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-30T06:44:31.527Z Has data issue: false hasContentIssue false

Effect of material and design parameters on the life and operating voltage of a ZnO varistor

Published online by Cambridge University Press:  31 January 2011

T. K. Gupta
Affiliation:
Aluminum Company of America, Alcoa Laboratories, Alcoa Center, Pennsylvania 15069
Get access

Abstract

A varistor's life has been defined as the time required to reach a limiting power density at which the power generated exceeds the power dissipated. Based on this concept, a working model for predicting the life of a ZnO varistor has been developed in terms of several critical material and design parameters. The model provides a direction as to whether these parameters should be maximized or minimized in order to enhance a varistor's life. Alternately, given a predetermined amount of the varistor's life, the model predicts a safe operating voltage under a given set of conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Matsuoka, M., Jpn. J. Appl. Phys. 10, 736 (1971).CrossRefGoogle Scholar
2Levinson, L. M. and Phillip, H. R., J. Appl. Phys. 46, 1332 (1975).CrossRefGoogle Scholar
3Hower, P. L. and Gupta, T. K., J. Appl. Phys. 50, 4847 (1979).CrossRefGoogle Scholar
4Pike, G. E., in Grain Boundaries In Semiconductors, edited by Leamy, H. J., Pike, G. E., and Seager, C. H. (Elsevier, New York, 1982), pp. 369379.Google Scholar
5Eda, K. and Iga, A., Jp n. J. Appl. Phys. 18, 997 (1979).Google Scholar
6Eda, K., Iga, A., and Matsuoka, M., J. Appl. Phys. 51, 2678 (1980).CrossRefGoogle Scholar
7Shirley, C. G. and Paulson, W. M., J. Appl. Phys. 50, 5782 (1979).CrossRefGoogle Scholar
8Sato, K., Takada, Y., Maekawa, H., Ototake, M., and Tominaga, S., Jpn. J. Appl. Phys. 19, 909 (1980).Google Scholar
9Tominaga, S., Shibuy, Y., Fujiwara, Y., Imataki, M., and Nitta, T., IEEE Trans. Power Appar. Sys. 99 (4), 1548 (1980).Google Scholar
10Moldenhauer, W., Bather, K. H., Bruckner, W., Hizn, D., and Buhling, D., Phys. Status Solidi A 67, 533 (1981).CrossRefGoogle Scholar
11Gupta, T. K., Carlson, W. G., and Hower, P. L., J. Appl. Phys. 52, 4104 (1981).Google Scholar
12Takahashi, K., Miyoshi, T., Meada, K., Yamazaki, T., and Ohwada, S., in Ref. 4, pp. 399404.Google Scholar
13Gupta, T. K., in the 1984 IEEE Conference on Electrical Insulation and Dielectric Phenomena, 21-25 October 1984, pp. 437447.Google Scholar
14Gupta, T. K. and Carlson, W. G., Advances In Ceramics, edited by Yan, M. F. and Heuer, A. H. (American Ceramic Society, Columbus, OH, 1983), Vol. 7, pp. 3040.Google Scholar
15Gupta, T. K. and Carlson, W. G., J. Appl. Phys. 53, 7401 (1982).Google Scholar
16Gupta, T. K. and Carlson, W. G., J. Mater. Sci. 20, 3487 (1985).Google Scholar
17Sakshaug, E. C., Kresge, J. S., and Miske, S. A., IEEE Trans. Power Appar. Sys. 96 (2), 647 (1977).CrossRefGoogle Scholar
18Seeker, S. A., in Technical Data on Metal Oxide Arresters For Overhead Distribution System (McGraw-Hill, Edison, NJ, 1980).Google Scholar
19Oyama, M., Ohshima, I., Honda, M., Yamashita, M., and Kohima, S., presented in the Proceedings of the IEEE Power Engineering Society Summer Meeting, Portland, Oregon, 26-31 July 1981, Manuscript No. 81–5M-303-7.Google Scholar
20Carlson, W. G., Gupta, T. K., and Sweetana, A., IEEE Trans. Power Del. 1 (2), 67 (1986).CrossRefGoogle Scholar
21Matsuoka, M., Eda, K., Kuchiba, K., Masuyama, T., and Nishi-gori, A., A High Voltage ZNR Absorber, National Technical Report (Matsushita Electric Company, Osaka, Japan, 1975), Vol. 21, pp. 109122.Google Scholar