Skip to main content Accessibility help
×
×
Home

Effect of processing parameters on anodic nanoporous tungsten oxide film structure and porosity for hydrogen detection

  • Taisheng Yang (a1), Yue Zhang (a1), Yanan Cai (a1) and Hui Tian (a2)
Abstract

Nanoporous tungsten oxide films were synthesized by an anodic oxidation process in aqueous NaF/HF electrolytes. The tungsten films were deposited by the radio frequency magnetron sputtering method on sapphire substrates, and the anodic oxidation process was conducted in a dual-electrode reaction chamber with graphite electrode. The effects of processing parameters (anodic voltage, time, temperature, and the operation distance) on the morphology and porosity of the synthesized films were investigated experimentally. The samples were characterized by x-ray diffraction and scanning electron microscopy. The results showed that the pore diameter and porosity increased gradually with increasing anodic voltage, whereas the “wall” of the pore was subjected to electric breakdown at 60 V, and the pore diameter and porosity decreased. The pore diameter and porosity showed an early increased and later decreased state as the operation time and distance are increased. The sensitive response in the resistive method is reaction-dominated type and is exhibited as a linear relationship as a function of hydrogen gas concentration. The response toward 500 ppm hydrogen in air is up to 15.1 with a response time of 10 min at 200 °C.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: zhangy@buaa.edu.cn
References
Hide All
1. Kiwa, T., Tsukada, K., Suzuki, M., Tonouchi, M., Migitaka, S., and Yokosawa, K.: Laser terahertz emission system to investigate hydrogen gas sensors. Appl. Phys. Lett. 86(26), 261102 (2005).
2. Wang, H-T., Anderson, T.J., Kang, B.S., Ren, F., Li, C., Low, Z-N., Lin, J., Gila, B.P., Pearton, S.J., Osinsky, A., and Dabiran, A.: Stable hydrogen sensors from AlGaN/GaN heterostructure diodes with TiB2-based Ohmic contacts. Appl. Phys. Lett. 90(25), 252109 (2007).
3. Buttner, W.J., Post, M.B., Burgess, R., and Rivkin, C.: An overview of hydrogen safety sensors and requirements. Int. J. Hydrogen Energy 36(3), 2462 (2011).
4. Şennik, E., Çolak, Z., Kılınç, N., and Öztürk, Z.Z.: Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor. Int. J. Hydrogen Energy 35(9), 4420 (2010).
5. Mahan, A.H., Parilla, P.A., Jones, K.M., and Dillon, A.C.: Hot-wire chemical vapor deposition of crystalline tungsten oxide nanoparticles at high density. Chem. Phys. Lett. 413(1–3), 88 (2005).
6. Qin, Y., Shen, W., Li, X., and Hu, M.: Effect of annealing on microstructure and NO2-sensing properties of tungsten oxide nanowires synthesized by solvothermal method. Sens. Actuators, B 155(2), 646 (2011).
7. Su, X.T., Xiao, F., Lin, J.L., Jian, J.K., Li, Y.N., Sun, Q.J., and Wang, J.D.: Hydrothermal synthesis of uniform WO3 submicrospheres using thiourea as an assistant agent. Mater. Charact. 61(8), 831 (2010).
8. Van Hieu, N., Van Vuong, H., Van Duy, N., and Hoa, N.D.: A morphological control of tungsten oxide nanowires by thermal evaporation method for sub-ppm NO2 gas sensor application. Sens. Actuators, B 171172(0), 760 (2012).
9. Yang, T-S., Lin, Z-R., and Wong, M-S.: Structures and electrochromic properties of tungsten oxide films prepared by magnetron sputtering. Appl. Surf. Sci. 252(5), 2029 (2005).
10. Zeng, J., Hu, M., Wang, W., Chen, H., and Qin, Y.: NO2-sensing properties of porous WO3 gas sensor based on anodized sputtered tungsten thin film. Sens. Actuators, B 161(1), 447 (2012).
11. Ou, J.Z., Balendhran, S., Field, M.R., McCulloch, D.G., Zoolfakar, A.S., Rani, R.A., Zhuiykov, S., O'Mullane, A.P., and Kalantar-zadeh, K.: The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties. Nanoscale 4(19), 5980 (2012).
12. Ou, J.Z., Rani, R.A., Balendhran, S., Zoolfakar, A.S., Field, M.R., Zhuiykov, S., O'Mullane, A.P., and Kalantar-zadeh, K.: Anodic formation of a thick three-dimensional nanoporous WO3 film and its photocatalytic property. Electrochem. Commun. 27(0), 128 (2013).
13. Kim, S. and Choi, J.: Photoelectrochemical anodization for the preparation of a thick tungsten oxide film. Electrochem. Commun. 17(0), 10 (2012).
14. Lee, W., Kim, D., Lee, K., Roy, P., and Schmuki, P.: Direct anodic growth of thick WO3 mesosponge layers and characterization of their photoelectrochemical response. Electrochim. Acta 56(2), 828 (2010).
15. Kalantar-zadeh, K., Sadek, A.Z., Zheng, H., Bansal, V., Bhargava, S.K., Wlodarski, W., Zhu, J., Yu, L., and Hu, Z.: Nanostructured WO3 films using high temperature anodization. Sens. Actuators, B 142(1), 230 (2009).
16. Kukkola, J., Mäklin, J., Halonen, N., Kyllönen, T., Tóth, G., Szabó, M., Shchukarev, A., Mikkola, J-P., Jantunen, H., and Kordás, K.: Gas sensors based on anodic tungsten oxide. Sens. Actuators, B 153(2), 293 (2011).
17. Hu, M., Zeng, J., Wang, W., Chen, H., and Qin, Y.: Porous WO3 from anodized sputtered tungsten thin films for NO2 detection. Appl. Surf. Sci. 258(3), 1062 (2011).
18. Li, F., Zhang, L., and Metzger, R.M.: On the growth of highly ordered pores in anodized aluminum oxide. Chem. Mater. 10(9), 2470 (1998).
19. Palibroda, E.: Aluminum porous oxide growth-II. On the rate determining step. Electrochim. Acta 40(8), 1051 (1995).
20. Kadary, V. and Klein, N.: Electrical breakdown: I. During the anodic growth of tantalum pentoxide. J. Electrochem. Soc. 127(1), 139 (1980).
21. Klein, N., Moskovici, V., and Kadary, V.: Electrical breakdown: II. During the anodic growth of aluminum oxide. J. Electrochem. Soc. 127(1), 152 (1980).
22. Ng, C., Ye, C., Ng, Y.H., and Amal, R.: Flower-shaped tungsten oxide with inorganic fullerene-like structure: Synthesis and characterization. Cryst. Growth Des. 10(8), 3794 (2010).
23. Ghorbani, M., Nasirpouri, F., Irajizad, A., and Saedi, A.: On the growth sequence of highly ordered nanoporous anodic aluminium oxide. Mater. Des. 27(10), 983 (2006).
24. Våland, T. and Heusler, K.E.: Reactions at the oxide-electrolyte interface of anodic oxide films on aluminum. J. Electroanal. Chem. Interfacial Electrochem. 149(1–2), 71 (1983).
25. Mason, R.B.: Factors affecting the formation of anodic oxide coatings in sulfuric acid electrolytes. J. Electrochem. Soc. 102(12), 671 (1955).
26. Applewhite, F.R., Leach, J.S.L., and Neufeld, P.: The temperature rise during anodizing of Al. Corros. Sci. 9(5), 305 (1969).
27. Ou, J.Z., Ahmad, M.Z., Latham, K., Kalantar-zadeh, K., Sberveglieri, G., and Wlodarski, W.: Synthesis of the nanostructured WO3 via anodization at elevated temperature for H2 sensing applications. Procedia Eng. 25(0), 247 (2011).
28. Kellett, E.A. and Rogers, S.E.: The structure of oxide layers on tungsten. J. Electrochem. Soc. 110(6), 502 (1963).
29. Barsan, N. and Weimar, U.: Conduction model of metal oxide gas sensors. J. Electroceram. 7(3), 143 (2001).
30. Yang, L., Zhang, S., Li, H., Zhang, G., Zhan, C., and Xie, C.: Conduction model of coupled domination by bias and neck for porous films as gas sensor. Sens. Actuators, B 176(0), 217 (2013).
31. Oprea, A., Moretton, E., Barsan, N., Becker, W.J., Wollenstein, J., and Weimar, U.: Conduction model of SnO2 thin films based on conductance and Hall effect measurements. J. Appl. Phys. 100(3), 033716 (2006).
32. Hübert, T., Boon-Brett, L., Black, G., and Banach, U.: Hydrogen sensors: A review. Sens. Actuators, B 157(2), 329 (2011).
33. Lenaerts, S., Roggen, J., and Maes, G.: FT-IR characterization of tin dioxide gas sensor materials under working conditions. Spectrochim. Acta, Part A 51(5), 883 (1995).
34. Yamazoe, N., Fuchigami, J., Kishikawa, M., and Seiyama, T.: Interactions of tin oxide surface with O2, H2O and H2 . Surf. Sci. 86(0), 335 (1979).
35. Chang, S-C.: Oxygen chemisorption on tin oxide: Correlation between electrical conductivity and EPR measurements. J. Vac. Sci. Technol., A 17(1), 366 (1980).
36. Luo, J.Y., Deng, S.Z., Tao, Y.T., Zhao, F.L., Zhu, L.F., Gong, L., Chen, J., and Xu, N.S.: Evidence of localized water molecules and their role in the gasochromic effect of WO3 nanowire films. J. Phys. Chem. C 113(36), 15877 (2009).
37. Ou, J.Z., Yaacob, M.H., Breedon, M., Zheng, H.D., Campbell, J.L., Latham, K., Plessis, J.D., Wlodarski, W., and Kalantar-zadeh, K.: In situ Raman spectroscopy of H2 interaction with WO3 films. Phys. Chem. Chem. Phys. 13(16), 7330 (2011).
38. Ou, J.Z., Campbell, J.L., Yao, D., Wlodarski, W., and Kalantar-zadeh, K.: In situ Raman spectroscopy of H2 gas interaction with layered MoO3 . J. Phys. Chem. C 115(21), 10757 (2011).
39. Laidler, K.J.: Chemical Kinetics (McGraw-Hill Book Company, New York, NY, 1965).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed