Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T02:33:12.682Z Has data issue: false hasContentIssue false

Effect of sterilization processes on the properties of a silane hybrid coating applied to Ti6Al4V alloy

Published online by Cambridge University Press:  21 November 2017

Estela K. Kerstner Baldin*
Affiliation:
Research Laboratory Corrosion (LAPEC), University of Rio Grande do Sul (UFRGS), Porto Alegre 9500, RS, Brazil
Charlene Garcia
Affiliation:
Laboratory of Genomics, Proteomics and DNA Repair, University of Caxias do Sul (UCS), Caxias do Sul 1130, RS, Brazil
João Antonio P. Henriques
Affiliation:
Laboratory of Genomics, Proteomics and DNA Repair, University of Caxias do Sul (UCS), Caxias do Sul 1130, RS, Brazil
Mariana Roesch Ely
Affiliation:
Laboratory of Genomics, Proteomics and DNA Repair, University of Caxias do Sul (UCS), Caxias do Sul 1130, RS, Brazil
Eliena Jonko Birriel
Affiliation:
Postgraduate Program in Process and Technology Engineering, University of Caxias do Sul (UCS), Caxias do Sul 1130, RS, Brazil
Rosmary Nichele Brandalise
Affiliation:
Postgraduate Program in Process and Technology Engineering, University of Caxias do Sul (UCS), Caxias do Sul 1130, RS, Brazil
Célia de Fraga Malfatti
Affiliation:
Research Laboratory Corrosion (LAPEC), University of Rio Grande do Sul (UFRGS), Porto Alegre 9500, RS, Brazil
*
a)Address all correspondence to this author. e-mail: estela.kerstner@ufrgs.br
Get access

Abstract

Sterilization is one of the last stages prior to the implantation of a biomaterial. Therefore, the method should be chosen carefully as this is determinant not to compromise the properties of the material. In this context, three sterilization processes were evaluated as to their effect on the properties of a silane hybrid coating: steam autoclave, ethylene oxide, and hydrogen peroxide plasma. The coating was obtained from a sol consisting of alkoxysilane Tetraethoxysilane and organoalcoxysilane Methyltriethoxysilane (MTES), applied to the Ti6Al4V substrate, to increase its corrosion resistance and biocompatibility. After sterilization, the samples were characterized by scanning electron microscopy, atomic force microscopy, profilometry, wetabillity, and Fourier transform infrared spectroscopy. The electrochemical behavior was monitored by open circuit potential and potentiodynamic polarization curves. The cytocompatibility was evaluated by adhesion, viability, and morphological alterations in the MG-63 cells. The results showed that the protective behavior of the hybrid coating was compromised regardless of the sterilization method. However, the steam autoclave caused more morphological changes on the silane hybrid coating as well as on the Ti6Al4V substrate than the other two sterilization methods. Although the sterilized hybrid coating did not show cytotoxicity, the hybrid coating sterilized by hydrogen peroxide plasma showed a higher percentage of viable cells. The ethylene oxide presented the lowest percentage of viability and the highest cell death rate.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Amit Bandyopadhyay

References

REFERENCES

Park, J.H., Navarrete, R.O., Baier, R.E., Meyer, A.E., Tannenbaum, R., Boyan, B.D., and Schwartz, Z.: Effect of cleaning and sterilization on titanium implant surface properties and cellular response. Acta Biomater. 8, 1966 (2012).CrossRefGoogle ScholarPubMed
Vetten, M.A., Yah, C.S., Singh, T., and Gulumian, M.: Challenges facing sterilization and depyrogenation of nanoparticles: Effects on structural stability and biomedical applications. Nanomedicine 10, 1391 (2014).Google Scholar
Liu, X.L., Zhou, W.R., Wu, Y.H., Chen, Y., and Zheng, Y.F.: Effect of sterilization process on surface characteristics and biocompatibility of pure Mg and MgCa alloys. Mater. Sci. Eng., C 33, 4144 (2013).Google Scholar
Qiu, Q.Q., Sun, W.Q., and Connor, J.: Sterilization of Biomaterials of Synthetic and Biological Origin (Elsevier, Branchburg, New Jersey, 2011); p. 127.Google Scholar
Savaris, M., Dos Santos, V., and Brandalise, R.N.: Influence of different sterilization processes on the properties of commercial poly(lactic acid). Mater. Sci. Eng., C 69, 661 (2016).Google Scholar
Wilson, A.J. and Nayak, S.: Disinfection, sterilization and disposables. Anaesthesia Intensive Care Med. 14, 423 (2013).Google Scholar
Chen, J., Wang, J., and Yuan, H.: Morphology and performances of the anodic oxide films on Ti6Al4V alloy formed in alkaline-silicate electrolyte with aminopropyl silane addition under low potential. Appl. Surf. Sci. 284, 900 (2013).Google Scholar
Yu, F., Addison, O., and Davenport, A.J.: A synergistic effect of albumin and H2O2 accelerates corrosion of Ti6Al4V. Acta Biomater. 26, 355 (2015).Google Scholar
Vasilescu, E., Drob, P., Raducanu, D., Moreno, J.M.C., Popa, M., and Rosca, J.C.M.: Effect of thermo-mechanical processing on the corrosion resistance of Ti6Al4V alloys in biofluids. Corros. Sci. 51, 2885 (2009).Google Scholar
Somsanith, N., Narayanan, T.S.N., Kim, Y.K., Park, I.S., Bae, T.S., and Lee, M.H.: Surface medication of Ti–15Mo alloy by thermal oxidation: Evaluation of surface characteristics and corrosion resistance in Ringer’s solution. Appl. Surf. Sci. 356, 1117 (2015).Google Scholar
Zhao, J., Milanova, M., Warmoeskerken, M.M.C.G., and Dutschk, V.: Surface modification of TiO2 nanoparticles with silane coupling agents. Colloids Surf., A 413, 273 (2012).Google Scholar
Surmenev, R.A., Surmeneva, M.A., and Ivanova, A.A.: Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis—A review. Acta Biomater. 10, 557 (2014).Google Scholar
Xie, J. and Luan, B.L.: Microstructural and electrochemical characterization of hydroxyapatite-coated Ti6Al4V alloy for medical implants. J. Mater. Res. 23, 768 (2008).Google Scholar
Ke, D., Robertson, S.F., Dernell, W.S., Bandyopadhyay, A., and Bose, S.: Effects of MgO and SiO2 on plasma-sprayed hydroxyapatite coating: An in vivo study in rat distal femoral defects. Appl. Mater. Interfaces 9, 25731 (2017).CrossRefGoogle Scholar
Asri, R.I.M., Harun, W.S.W., Hassan, M.A., Ghani, S.A.C., and Buyong, Z.: A review of hydroxyapatite-based coating techniques: Sol–gel and electrochemical depositions on biocompatible metals. J. Mech. Behav. Biomed. Mater. 57, 95 (2016).Google Scholar
Choudhury, P. and Agrawal, D.C.: Sol–gel derived hydroxyapatite coatings on titanium substrates. Surf. Coat. Technol. 206, 360 (2011).Google Scholar
Juan-Díaz, M.J., Martínez-Ibáñez, M., Lara-Sáez, I., da Silva, S., Izquierdo, R., Gurruchaga, M., Goñi, I., and Suay, J.: Development of hybrid sol–gel coatings for the improvement of metallic biomaterials performance. Prog. Org. Coat. 96, 42 (2016).Google Scholar
Dubruel, P., Vanderleyden, E., Bergadà, M., Paepe, I.D., Chen, H., Kuypers, S., Luyten, J., Schrooten, J., Hoorebeke, L.V., and Schacht, E.: Comparative study of silanisation reactions for the biofunctionalisation of Ti-surfaces. Surf. Sci. 600, 2562 (2006).Google Scholar
Omar, S.A., Ballare, J., and Ceré, S.M.: Protection and functionalization of AISI 316L stainless for orthopedic implants: Hybrid coating and sol gel glasses by spray to promote bioactivity. Electrochim. Acta 203, 309 (2016).CrossRefGoogle Scholar
Ballarre, J., Seltzer, R., Mendoza, E., Orellano, J.C., Mai, Y.W., García, C., and Ceré, S.M.: Morphologic and nanomechanical characterization of bone tissue growth around bioactive sol–gel coatings containing wollastonite particles applied on stainless steel implants. Mater. Sci. Eng., C 31, 545 (2011).Google Scholar
Wang, D. and Bierwagen, G.P.: Sol–gel coatings on metals for corrosion protection. Prog. Org. Coat. 64, 327 (2009).CrossRefGoogle Scholar
Zomorodian, A., Brusciotti, F., Fernandes, A., Moura, M.J., Fernandes, J.C.S., and Montemor, M.F.: Anti-corrosion performance of a new silane coating for corrosion protection of AZ31 magnesium alloy in Hank’s solution. Surf. Coat. Technol. 206, 4368 (2012).Google Scholar
Hojjati, N., Mozaffarinia, R., Hamed, S.R., and Paimozd, E.: Sol–gel processing of hybrid nanocomposite protective coatings using experimental design. Prog. Org. Coat. 76, 293 (2013).CrossRefGoogle Scholar
Zheng, C.Y., Nie, F.L., Zheng, Y.F., Cheng, Y., Wei, S.C., and Valiev, R.Z.: Enhanced corrosion resistance and cellular behavior of ultrafine-grained biomedical NiTi alloy with a novel SrO–SiO2–TiO2 sol–gel coating. Appl. Surf. Sci. 257, 5913 (2011).Google Scholar
Liu, X., Yue, Z., Romeo, T., Weber, J., Scheuermann, T., Moulton, S., and Wallace, G.: Biofunctionalized anti-corrosive silane coatings for magnesium alloys. Acta Biomater. 9, 8671 (2013).CrossRefGoogle ScholarPubMed
Junkar, I., Kulkarni, M., and Drašler, B.: Influence of various sterilization procedures on TiO2 nanotubes used for biomedical devices. Bioelectrochemistry 109, 79 (2016).Google Scholar
Hirano, M., Kozuka, T., and Asano, Y.: Effect of sterilization and water rinsing on cell adhesion to titanium surfaces. Appl. Surf. Sci. 311, 498 (2014).Google Scholar
Oh, S., Rammer, K.S.B., Moon, K.S., Bae, J.M., and Jins, S.: Influence of sterilization methods on cell behavior and functionality of osteoblasts cultured on TiO2 nanotubes. Mater. Sci. Eng., C 31, 873 (2011).Google Scholar
Walke, W., Paszenda, Z., Pustelny, T., Ziemniak, M.K., and Basiaga, M.: Evaluation of physicochemical properties of SiO2-coated stainless steel after sterilization. Mater. Sci. Eng., C 63, 155 (2016).CrossRefGoogle ScholarPubMed
Almeida, J.C., Joana, L., Helena, V.F.M., Fernanda, M.A.M., and Alvado, I.M.: Evaluating structural and microstructural changes of PDMS–SiO2 hybrid materials after sterilization by gamma irradiation. Mater. Sci. Eng., C 48, 354 (2015).Google Scholar
García, C., Ceré, S., and Durán, A.: Bioactive coatings prepared by sol–gel on stainless steel 316L. J. Non-Cryst. Solids 348, 218 (2004).CrossRefGoogle Scholar
Ballarre, J., López, D.A., Schreiner, W.H., Durán, A., and Ceré, S.M.: Protective hybrid sol–gel coatings containing bioactive particles on surgical grade stainless steel: Surface characterization. Appl. Surf. Sci. 253, 7260 (2007).Google Scholar
Ballarre, J., Manjubala, I., Schreiner, W.H., Orellano, J.C., Peter, F., and Ceré, S.: Improving the osteointegration and bone–implant interface by incorporation of bioactive particles in sol–gel coatings of stainless steel implants. Acta Biomater. 6, 1601 (2010).Google Scholar
Rodríguez-Cano, A., Cintas, P., Fernández-Calderón, M.C., Pacha-olivenza, M.A., Crespo, L., González-Martín, M.L., and Babiano, R.: Controlled silanization–amination reactions on the Ti6Al4V surface for biomedical applications. Colloids Surf., B 106, 248 (2013).Google Scholar
Smith, G.T.: Industrial Metrology (Faculty of Technology, Springer, London, 2002); pp. 24356.Google Scholar
Kokubo, T. and Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907 (2006).Google Scholar
Ballarre, J., López, D.A., Rosero, N.C., Durán, A., Aparicio, M., and Ceré, S.M.: Electrochemical evaluation of multilayer silica–metacrylate hybrid sol–gel coatings containing bioactive particles on surgical grade stainless steel. Surf. Coat. Technol. 203, 80 (2008).Google Scholar
Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55 (1983).Google Scholar
Alley, M.C., Dominic, A.S., Anne, M., Miriam, L.M., Maciej, J.C., Donald, L.F., Betty, J.A., Joseph, G.M., Robert, H.S., and Michael, R.B.: Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 48, 589 (1988).Google Scholar
Nersesyan, A., Kundi, M., Atefie, K., Schulte-hermann, R., and Knasmuller, S.: Effect of staining procedures on the results of micronucleus assays with exfoliated oral mucosa cells. Cancer Epidemiol., Biomarkers Prev. 15, 1835 (2006).Google Scholar
Baldin, E.K.K., Kunst, S.R., Beltrami, L.V.R., Lemos, T.M., Quevedo, A.C.B., Ferreira, M.G.S., Santos, P.R.R., Sarmento, V.H.V., and Malfatti, C.F.: Ammonium molybdate added in hybrid films applied on tinplate: Effect of the concentration in the corrosion inhibition action. Thin Solid Films 600, 146 (2016).Google Scholar
Wang, M., Wang, Y., Chen, Y., and Gu, H.: Improving endothelialization on 316L stainless steel through wettability controllable coating by sol–gel technology. Appl. Surf. Sci. 268, 73 (2013).Google Scholar
Innocenzi, P., Abdirashid, M.O., and Guglielm, M.I.: Structure and properties of sol–gel coatings from methyltriethoxysilane and tetraethoxysilane. J. Sol-Gel Sci. Technol. 3, 47 (1994).Google Scholar
Kunst, S.R., Beltrami, L.V.R., Cardoso, H.R.P., Santana, J.A., Sarmento, V.H.V., Müller, I.L., and Malfatti, C.F.: Characterization of siloxane–poly(methyl methacrylate) hybrid films obtained on a tinplate substrate modified by the addition of organic and inorganic acids. Mater. Res. 18, 151 (2015).Google Scholar
Gan, J.A. and Berndt, C.C.: Plasma surface modification of metallic biomaterials. Surf. Coat. Modif. Met. Biomater. 1, 103 (2015).Google Scholar
Müller, G., Benkhai, H., Matthes, R., Finke, B., Friedrichs, W., Geist, N., Langel, W., and Kramer, A.: Poly(hexamethylene biguanide) adsorption on hydrogen peroxide treated Ti–Al–V alloys and effects on wettability, antimicrobial efficacy and cytotoxicity. Biomaterials 35, 5261 (2014).Google Scholar
Pegueroles, M., Gil, F.J., Planell, J.A., and Aparicio, C.: The influence of blasting and sterilization on static and time-related wettability and surface-energy properties of titanium surfaces. Surf. Coat. Technol. 202, 3470 (2008).Google Scholar
Wang, C.C.R., Hsieh, M.C., and Lee, T.M.: Effects of nanometric roughness on surface properties and fibroblast’s initial cytocompatibilities of Ti6AI4V. Biointerphases 6, 87 (2011).Google Scholar
Galante, R., Ghisleni, D., Paradiso, P., Alves, V.D., Pinto, T.J.A., Colaço, R., and Serro, A.P.: Sterilization of silicone-based hydrogels for biomedical application using ozone gas: Comparison with conventional techniques. Mater. Sci. Eng., C 78, 389 (2017).Google Scholar
Lee, M.L., Kim, H.L., Kim, C.H., Lee, S.H., KIm, J.K., Lee, S.J., and Park, J.C.: Effects of low temperature hydrogen peroxide gas on sterilization and cytocompatibility of porous poly(D,L-lactic-co-glycolic acid) scaffolds. Surf. Coat. Technol. 202, 5762 (2008).Google Scholar
Fleith, S., Ponche, A., Bareille, R., Amédée, J., and Nardin, M.: Effect of several sterilisation techniques on homogeneous self assembled monolayers. Colloids Surf., B 44, 15 (2005).Google Scholar
Holyak, G.R., Wang, S., Liu, Y., and Bunch, T.D.: Toxic effects of ethylene oxide residues on bovine embryos. Toxicol. In Vitro 108, 33 (1996).Google Scholar
França, R., Doris, A.M., Samani, T.D., Tien, C.L., Mateescu, M.A., Yahia, L., and Sacher, E.: The effect of ethylene oxide sterilization on the surface chemistry and in vitro cytotoxicity of several kinds of chitosan. J. Biomed. Mater. Res., Part B 101, 1444 (2013).Google Scholar
Yavuz, C., Oliaei, S.N.B., and Celikta, O.S.: Sterilization of PMMA microfluidic chips by various techniques and investigation of material characteristic. J. Supercrit. Fluids 107, 114 (2016).Google Scholar
Ribeiro, A.L.R., Hammer, P., Vaz, L.G., and Rocha, L.A.: Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study. Biomed. Mater. 8, 65005 (2013).CrossRefGoogle ScholarPubMed
López, M.M., Fauré, J., Cabrera, M.I.E., and García, M.E.C.: Structural characterization and electrochemical behavior of 45S5 bioglass coating on Ti6Al4V alloy for dental applications. Mater. Sci. Eng., B 206, 30 (2016).Google Scholar
Szewczenko, J., Grygiel, P.M., Walke, W., Nowinska, K., Granieczny, J., Kaczmarek, M., and Marciniak, J.: Corrosion resistance of Ti6Al4V alloy in modified SBF environments. Key Eng. Mater. 687, 79 (2015).Google Scholar
Kiel-Jamrozik, M., Szewczenko, J., Basiaga, M., and Nowińska, K.: Technological capabilities of surface layers formation on implant made of Ti–6Al–4V ELI alloy. Acta Bioeng. Biomech. 17, 31 (2016).Google Scholar
Paszenda, Z., Walke, W., and Jadacka, S.: Electrochemical investigations of Ti6Al4V and Ti6Al7Nb alloys used on implants in bone surgery. J. Achiev. Mater. Manuf. Eng. 38, 24 (2010).Google Scholar
Basiaga, M., Walke, W., Paszenda, Z., and Kajzer, A.: The effect of EO and steam sterilization on the mechanical and electrochemical properties of titanium grade 4. Mater. Tehnol. 50, 153 (2016).Google Scholar
García, C., Ceré, S., and Durán, A.: Bioactive coatings deposited on titanium alloys. J. Non-Cryst. Solids 352, 3488 (2006).Google Scholar
Györgyey, Á., Ungvári, K., and Kecskeméti, G.: Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material. Mater. Sci. Eng., C 33, 4251 (2013).Google Scholar
Likibi, F., Jiang, B., and Li, B.: Biomimetic nanocoating promotes osteoblast cell adhesion on biomedical implants. J. Mater. Res. 23, 3222 (2008).Google Scholar
Wirth, C., Grosgogeat, B., Jaffrezic-Renault, N., and Ponsonnet, L.: Biomaterial surface properties modulate in vitro rat calvaria osteoblasts response: Roughness and or chemistry? Mater. Sci. Eng., C 28, 990 (2008).Google Scholar
Gittens, R.A., McLachlan, T., Olivares-Navarrete, R., Cai, Y., Berner, S., Tannenbaum, R., Schwartz, Z., Sandhage, K.H., and Boyan, B.D.: The effects of combined micron/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 32, 3395 (2011).Google Scholar
Moon, B.S., Kim, S., Kim, H.E., and Jang, T.S.: Hierarchical micro-nano structured Ti6Al4V surface topography via two-step etching process for enhanced hydrophilicity and osteoblastic responses. Mater. Sci. Eng., C 73, 90 (2017).Google Scholar
Zhao, L., Mei, S., and Wang, W.: The role of sterilization in the cytocompatibility of titania nanotubes. Biomaterials 31, 2055 (2010).Google Scholar
Martin, J.Y., Schwartz, Z., Hummert, T.W., Schraub, D.M., Simpson, J., Lankford, J.R.J., Dean, D.D., Cochran, D.L., and Boyan, B.D.: Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG-63). J. Biomed. Mater. Res. 29, 389 (1995).Google Scholar
Sharma, S., Bano, S., and Ghosh, A.S.: Silk fibroin nanoparticles support in vitro sustained antibiotic release and osteogenesis on titanium surface. Nanomedicine 12, 1193 (2016).Google Scholar
Supplementary material: Image

Baldin et al supplementary material

Baldin et al supplementary material 1

Download Baldin et al supplementary material(Image)
Image 2.5 MB