Skip to main content
    • Aa
    • Aa

The effect of tribolayers on the behavior friction of X40CrMoV5/Fe360B steel couple in an open sliding contact

  • Z. Baccouch (a1), R. Mnif (a1), R. Elleuch (a1) and C. Richard (a2)

Metal working tools are generally exposed to hard conditions, and the control of their excessive wear is of a crucial importance for the metal working process. Indeed, tribo-layers as mechanically mixed layers and wear debris are completely involved in the wear behavior. This paper undertakes the study of the frictional behavior and wear of X40CrMoV5 (AISI H13) tool steel as a function of speed rotation at room temperature. The utmost objective of this research work is to assess some wear mechanisms of this tool steel used at room temperature. The tribological experiments were accomplished on high temperature pin-on-disc tribometer with an open sliding contact. The pin material was X40CrMoV5 steel and the disc material was Fe360B steel. The investigations were accomplished for different rotatory speeds of the disc ranging from 25 rpm to 100 rpm, and different nominal pressure. SEM and EDS explored the development surface damage and oxides tribo-layers. It was concluded that the increase of the rotation speed of the disc and the nominal pressure reduce the friction coefficient by the creation of a wear protective layer.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All
Contributing Editor: Jürgen Eckert
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 1
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 61 *
Loading metrics...

* Views captured on Cambridge Core between 14th March 2017 - 29th June 2017. This data will be updated every 24 hours.