Skip to main content
×
×
Home

Effect of Zn addition on microstructure and mechanical properties of Mg–9Gd–3Y–0.5Zr alloy

  • Wendong Cui (a1), Lv Xiao (a2), Wencai Liu (a1), Guohua Wu (a1), Xianfei Wang (a2) and Zhongquan Li (a2)...
Abstract
Abstract

A comparison of microstructure, mechanical properties and fracture behavior of Mg–9Gd–3Y–xZn–0.5Zr (x = 0, 0.2, 0.5, 1.0, and 1.5) (wt%) alloys under different thermal treatment conditions was investigated in this study. The results showed that the as-cast alloys were comprised of Mg matrix, eutectic compounds and cuboid-shaped phases. The eutectics were Mg24(Gd, Y)5 in the alloys of Zn content ≤0.2 wt%, while (Mg, Zn)3RE in the other three alloys. Fine lamellar long period stacking ordered structure formed inside of matrix of the as-cast Zn-containing alloys and its quantity increases with raising Zn content. Mg12(Gd, Y)Zn was observed at grain boundary of Mg matrix after solution treatment in the alloys of Zn content ≥0.5 wt%. Peak-aged Mg–9Gd–3Y–0.5Zn–0.5Zr alloy exhibited a desirable combination of strength and elongation with 244 MPa in yield strength, 371 MPa in ultimate tensile strength and 3.8% in EL. Meanwhile, the fracture behavior of the studied alloys was also investigated.

Copyright
Corresponding author
a) Address all correspondence to these authors. e-mail: liuwc@sjtu.edu.cn
b) e-mail: ghwu@sjtu.edu.cn
Footnotes
Hide All

Contributing Editor: Jürgen Eckert

Footnotes
References
Hide All
1. Mordike B.L. and Ebert T.: Magnesium: Properties-applications-potential. Mater. Sci. Eng., A 302, 3745 (2001).
2. Li D.J., Zeng X.Q., Dong J., and Zhai C.Q.: Influence of heat treatment on microstructure and mechanical properties of Mg–10Gd–3Y–1.2Zn–0.4Zr alloy. Trans. Nonferrous Met. Soc. China 18, 117121 (2008).
3. Nakatsugawa I., Kamado S., Kojima Y., Ninomiya R., and Kubota K.: Corrosion of magnesium alloys containing rare earth elements. Corros. Rev. 16, 139158 (1998).
4. Anthony A.I., Kamado S., and Kojima Y.: Aging characteristics and high temperature tensile properties of Mg–Gd–Y–Zr alloys. Mater. Trans. 42, 12061211 (2001).
5. He S.M., Zeng X.Q., Peng L.M., Gao X., Nie J.F., and Ding W.J.: Precipitation in a Mg–10Gd–3Y–0.4Zr (wt%) alloy during isothermal ageing at 250 °C. J. Alloys Compd. 421, 309313 (2006).
6. He S.M., Zeng X.Q., Peng L.M., Gao X., Nie J.F., and Ding W.J.: Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5Zr alloy. J. Alloys Compd. 427, 316323 (2007).
7. Anyanwu I.A., Kamado S., and Kojima Y.: Platform science and technology for advanced magnesium alloys. Creep properties of Mg–Gd–Y–Zr alloys. Mater. Trans. 42, 12121218 (2001).
8. Wang J., Meng J., Zhang D., and Tang D.: Effect of Y for enhanced age hardening response and mechanical properties of Mg–Gd–Y–Zr alloys. Mater. Sci. Eng., A 456, 7884 (2007).
9. Sun M., Wu G., Wang W., and Ding W.: Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg–10Gd–3Y magnesium alloy. Mater. Sci. Eng., A 523, 145151 (2009).
10. Jafari Nodooshan H.R., Wu G., Liu W., Wei G., Li Y., and Zhang S.: Effect of Gd content on high temperature mechanical properties of Mg–Gd–Y–Zr alloy. Mater. Sci. Eng., A 651, 840847 (2016).
11. Kawabata T., Matsuda K., Kamado S., Kojima Y., and Ikeno S.: HRTEM observation of the precipitates in Mg–Gd–Y–Zr alloy. Mater. Sci. Forum 419–422, 303306 (2003).
12. Zhang H., Fan J., Zhang L., Wu G., Liu W., Cui W., and Feng S.: Effect of heat treatment on microstructure, mechanical properties and fracture behaviors of sand-cast Mg–4Y–3Nd–1Gd–0.2Zn–0.5Zr alloy. Mater. Sci. Eng., A 677, 411420 (2016).
13. Luo Z., Zhang S., Tang Y., and Zhao D.: Microstructures of Mg–Zn–Zr-RE alloys with high RE and low Zn contents. J. Alloys Compd. 209, 275278 (1994).
14. Honma T., Ohkubo T., Kamado S., and Hono K.: Effect of Zn additions on the age-hardening of Mg–2.0Gd–1.2Y–0.2Zr alloys. Acta Mater. 55, 41374150 (2007).
15. Kawamura Y., Hayashi K., Inoue A., and Masumoto T.: Rapidly solidified powder metallurgy magnesium alloys with novel mechanical properties. Mater. Sci. Forum 13, 529534 (2002).
16. Zhang S., Liu W., Gu X., Lu C., Yuan G., and Ding W.: Effect of solid solution and aging treatments on the microstructures evolution and mechanical properties of Mg–14Gd–3Y–1.8Zn–0.5Zr alloy. J. Alloys Compd. 557, 9197 (2013).
17. Li D., Zeng X., Dong J., Zhai C., and Ding W.: Microstructure evolution of Mg–10Gd–3Y–1.2Zn–0.4Zr alloy during heat-treatment at 773 K. J. Alloys Compd. 468, 164169 (2009).
18. Zhang S., Yuan G.Y., Lu C., and Ding W.J.: The relationship between (Mg,Zn)3RE phase and 14H-LPSO phase in Mg–Gd–Y–Zn–Zr alloys solidified at different cooling rates. J. Alloys Compd. 509, 35153521 (2011).
19. Gao Y., Wang Q., Gu J., Zhao Y., Tong Y., and Yin D.: Comparison of microstructure in Mg–10Y–5Gd–0.5Zr and Mg–10Y–5Gd–2Zn–0.5Zr alloys by conventional casting. J. Alloys Compd. 477, 374378 (2009).
20. Liu K., Zhang J., Su G., Tang D., Rokhlin L.L., Elkin F.M., and Meng J.: Influence of Zn content on the microstructure and mechanical properties of extruded Mg–5Y–4Gd–0.4Zr alloy. J. Alloys Compd. 481, 811818 (2009).
21. Zhu Y.M., Morton A.J., and Nie J.F.: Growth and transformation mechanisms of 18R and 14H in Mg–Y–Zn alloys. Acta Mater. 60, 65626572 (2012).
22. Chino Y., Mabuchi M., Hagiwara S., Iwasaki H., Yamamoto A., and Tsubakino H.: Novel equilibrium two phase Mg alloy with the long-period ordered structure. Scr. Mater. 51, 711714 (2004).
23. Suzuki M., Kimura T., Koike J., and Maruyama K.: Strengthening effect of Zn in heat resistant Mg–Y–Zn solid solution alloys. Scr. Mater. 48, 9971002 (2003).
24. Yamada K., Okubo Y., Shiono M., Watanabe H., Kamado S., and Kojima Y.: Alloy development of high toughness Mg–Gd–Y–Zn–Zr alloys. Mater. Trans. 47, 10661070 (2006).
25. Huang S., Wang J., Hou F., Huang X., and Pan F.: Effect of Gd and Y contents on the microstructural evolution of long period stacking ordered phase and the corresponding mechanical properties in Mg–Gd–Y–Zn–Mn alloys. Mater. Sci. Eng., A 612, 363370 (2014).
26. Lee J.Y., Kim D.H., Lim H.K., and Kim D.H.: Effects of Zn/Y ratio on microstructure and mechanical properties of Mg–Zn–Y alloys. Mater. Lett. 59, 38013805 (2005).
27. Liu Y., Yuan G., Zhang S., Zhang X., Lu C., and Ding W.: Effects of Zn/Gd ratio and content of Zn, Gd on phase constitutions of Mg alloys. Mater. Trans. 49, 941944 (2008).
28. Su Z., Liu C., and Wan Y.: Microstructures and mechanical properties of high performance Mg–4Y–2.4Nd–0.2Zn–0.4Zr alloy. Mater. Des. 45, 466472 (2013).
29. Kang Y.H., Wu D., Chen R.S., and Han E.H.: Microstructures and mechanical properties of the age hardened Mg–4.2Y–2.5Nd–1Gd–0.6Zr (WE43) microalloyed with Zn. J. Magnesium Alloys 2, 109115 (2014).
30. Liu X.B., Chen R.S., and Han E.H.: Effects of ageing treatment on microstructures and properties of Mg–Gd–Y–Zr alloys with and without Zn additions. J. Alloys Compd. 465, 232238 (2008).
31. Shao X.H., Yang Z.Q., and Ma X.L.: Strengthening and toughening mechanisms in Mg–Zn–Y alloy with a long period stacking ordered structure. Acta Mater. 58, 47604771 (2010).
32. Ding W.J., Wu Y.J., Peng L.M., Zeng X.Q., Yuan G.Y., and Lin D.L.: Formation of 14H-type long period stacking ordered structure in the as-cast and solid solution treated Mg–Gd–Zn–Zr alloys. J. Mater. Res. 24, 18421854 (2011).
33. Gao X., Muddle B.C., and Nie J.F.: Transmission electron microscopy of Zr–Zn precipitate rods in magnesium alloys containing Zr and Zn. Philos. Mag. Lett. 89, 3343 (2009).
34. Sha G., Zhu H.M., Liu J.W., Luo C.P., Liu Z.W., and Ringer S.P.: Hydrogen-induced decomposition of Zr-rich cores in an Mg–6Zn–0.6Zr–0.5Cu alloy. Acta Mater. 60, 56155625 (2012).
35. Wu Y.J., Peng L.M., Zeng X.Q., Lin D.L., and Ding W.J.: Formation of a novel X Phase in Mg–Gd–Zn–Zr alloy. Mater. Sci. Forum 654–656, 623626 (2010).
36. Datta A., Waghmare U.V., and Ramamurty U.: Structure and stacking faults in layered Mg–Zn–Y alloys: A first-principles study. Acta Mater. 56, 25312539 (2008).
37. Suzuki M., Kimura T., Koike J., and Maruyama K.: Effects of zinc on creep strength and deformation substructures in Mg–Y alloy. Mater. Sci. Eng., A 387–389, 706709 (2004).
38. Gao L., Chen R.s., and Han E.h.: Fracture behavior of high strength Mg–Gd–Y–Zr magnesium alloy. Trans. Nonferrous Met. Soc. China 20, 12171221 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 17 *
Loading metrics...

Abstract views

Total abstract views: 68 *
Loading metrics...

* Views captured on Cambridge Core between 29th December 2017 - 19th January 2018. This data will be updated every 24 hours.