Skip to main content

Effects of focused-ion-beam irradiation and prestraining on the mechanical properties of FCC Au microparticles on a sapphire substrate

  • Seok-Woo Lee (a1), Dan Mordehai (a2), Eugen Rabkin (a2) and William D. Nix (a3)

We have studied the effects of focused-ion-beam (FIB) irradiation and prestraining on the mechanical properties of nearly defect-free Au microparticles on a sapphire substrate. The Au microparticles, which were produced by a solid-state diffusion dewetting technique, were FIB-irradiated and/or prestrained, the latter using a nanoindenter with a flat ended punch operating under a nanohammering mode. Also, the prestrained Au microparticles were exposed to FIB to examine the effects of ion-beam damage on the properties of crystals containing mobile dislocations. We found that both FIB irradiation and prestraining reduced the yield strength of pristine Au microparticles significantly and made the stress–strain curves jerky. However, FIB irradiation does not affect the mechanical properties of prestrained Au microparticles very significantly. Once a microparticle contains mobile dislocations, its mechanical properties are not influenced much by the defects generated by FIB irradiation, even at the submicrometer scale.

Corresponding author
a)Address all correspondence to this author. e-mail address:
Hide All
1.Nix, W.D., Greer, J.R., Feng, G., and Lilleodden, E.T.: Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation. Thin Solid Films 515, 3152 (2007).
2.Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).
3.Greer, J.R., Oliver, W.C., and Nix, W.D.: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).
4.Volkert, C.A. and Lilleodden, E.T.: Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86, 5567 (2006).
5.Kiener, D., Motz, C., Rester, M., Jenko, M., and Dehm, G.: FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater. Sci. Eng., A 459, 262 (2007).
6.Bei, H., Shim, S., George, E.P., Miller, M.K., Herbert, E.G., and Pharr, G.M.: Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique. Scr. Mater. 57, 397 (2007).
7.Richter, G., Hillerich, K., Gianola, D.S., Mönig, R., Kraft, O., and Volkert, C.A.: Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 9, 3048 (2009).
8.Jennings, A.T., Burek, M.J., and Greer, J.R.: Microstructure versus size: Mechanical properties of electroplated single crystalline Cu nanopillars. Phys. Rev. Lett. 104, 135503 (2010).
9.Sadan, H. and Kaplan, W.D.: Au–Sapphire (0001) solid–solid interfacial energy. J. Mater. Sci. 41, 5099 (2006).
10.Mordehai, D., Kazakevich, M., Srolovitz, D.J., and Rabkin, E.: Nanoindentation size effect in single-crystal nanoparticle and thin films: A comparative experimental and simulation study. Acta Mater. 59, 2309 (2011).
11.Bei, H., Shim, S., Pharr, G.M., and George, E.P.: Effects of pre-strain on the compressive stress–strain response of Mo-alloy single-crystal micropillars. Acta Mater. 56, 4762 (2008).
12.Shim, S., Bei, H., Miller, M.K., Pharr, G.M., and George, E.P.: Effects of focused-ion-beam milling on the compressive behavior of directionally solidified micropillars and the nanoindentation response of an electropolished surface. Acta Mater. 57, 503 (2009).
13.Mordehai, D., Lee, S-W., Eckert, B., Srolovitz, D.J., Nix, W.D., and Rabkin, E.: Size effect in compression of single-crystal gold microparticles. Acta Mater. 59, 5202 (2011).
14.Lee, S-W., Han, S.M., and Nix, W.D.: Uniaxial compression of fcc Au nanopillars on an MgO substrate: The effects of prestraining and annealing. Acta Mater. 57, 4404 (2009).
15.Greer, J.R. and Nix, W.D.: Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 245410 (2006).
16.Brinckmann, S., Kim, J-Y., and Greer, J.R.: Fundamental differences in mechanical behavior between two types of crystals at the nanoscale. Phys. Rev. Lett. 100, 155502 (2008).
17.Ziegler, J.F., Biersack, J.P., and Littmark, U.: The Stopping Range of Ions in Matter (Pergamon Press, New York, 1985), p. 321.
18.El-Awady, J.A., Woodward, C., Dimiduk, D.M., and Ghoniem, N.M.: Effects of focused ion beam induced damage on the plasticity of micropillars. Phys. Rev. B 80, 104104 (2009).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 6
Total number of PDF views: 44 *
Loading metrics...

Abstract views

Total abstract views: 157 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th March 2018. This data will be updated every 24 hours.