Skip to main content
×
Home
    • Aa
    • Aa

Effects of gas blowing condition on formation of mixed halide perovskite layer on organic scaffolds

  • Takeshi Gotanda (a1), Shigehiko Mori (a1), Haruhi Oooka (a1), Hyangmi Jung (a1), Hideyuki Nakao (a1), Kenji Todori (a1) and Yutaka Nakai (a1)...
Abstract
Abstract

Perovskite solar cells are promising for realizing high power conversion efficiency (PCE) with low manufacturing costs, but efficient coating methods are needed for commercialization. Here, a gas blowing method was used to fabricate perovskite solar cells and was found to create a smooth perovskite layer and to prevent voids in large-area cells, when organic materials were used as scaffolds for forming the perovskite. A PCE of 13% in a 1 cm2 active area is achieved by tuning the band-gap energy of MAPbX3 via substitution of Br for I ions in X sites. Incorporation of a poly(3,4-ethylenedioxythiophene) hole transport layer with a higher work function increased the open circuit voltage of the solar cells. All layers of the cells were fabricated at low temperatures (<140 °C), which makes it possible to incorporate a polymer substrate for producing flexible solar cells and high-throughput fabrication.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: takeshi.gotanda@toshiba.co.jp
Footnotes
Hide All

Contributing Editor: Sam Zhang

Footnotes
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

A. Kojima , K. Teshima , Y. Shirai , and T. Miyasaka : Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009).

M.A. Green , K. Emery , Y. Hishikawa , W. Warta , E.D. Dunlop , D.H. Levi , and A.W.Y. Ho-Baillie : Solar cell efficiency tables (version 49). Prog. Photovoltaics 25, 3 (2017).

W.E.I. Sha , X. Ren , L. Chen , and W.C.H. Choy : The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 106, 221104 (2015).

N. Ahn , D-Y. Son , I-H. Jang , S.M. Kang , M. Choi , and N-G. Park : Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 137, 8696 (2015).

T.M. Koh , V. Shanmugam , J. Schlipf , L. Oesinghaus , P.M. Buschbaum , N. Ramakrishnan , V. Swamy , N. Mathews , P.P. Boix , and S.G. Mhaisalkar : Nanostructuring mixed-dimensional perovskites: A route toward tunable, efficient photovoltaics. Adv. Mater. 28, 3653 (2016).

N.J. Jeon , J.H. Noh , Y.C. Kim , W.S. Yang , S. Ryu , and S.I. Seok : Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897 (2014).

F. Huang , Y. Dkhissi , W. Huang , M. Xiao , I. Benesperi , S. Rubanov , Y. Zhu , X. Lin , L. Jiang , Y. Zhou , A. Gray-Weale , J. Etheridge , C.R. McNeill , R.A. Caruso , U. Bach , L. Spiccia , and Y-B. Cheng : Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells. Nano Energy 10, 10 (2014).

L. Meng , J. You , T-F. Guo , and Y. Yang : Recent advances in the inverted planar structure of perovskite solar cells. Acc. Chem. Res. 49, 155 (2016).

X. Li , D. Bi , C. Yi , J-D. Décoppet , J. Luo , S.M. Zakeeruddin , A. Hagfeldt , and M. Grätzel : A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353, 58 (2016).

J. Song , E. Zheng , J. Bian , X-F. Wang , W. Tian , Y. Sanehirac , and T. Miyasakac : Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells. J. Mater. Chem. A 3, 10837 (2015).

Q. Wang , Q. Dong , T. Li , A. Gruverman , and J. Huang : Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv. Mater. 28, 6734 (2016).

B. Xia , Z. Wu , H. Dong , J. Xi , W. Wu , T. Lei , K. Xi , F. Yuan , B. Jiao , L. Xiao , Q. Gongb , and X. Hou : Formation of ultrasmooth perovskite films toward, highly efficient inverted planar heterojunction solar cells by micro-flowing anti-solvent deposition in air. J. Mater. Chem. A 4, 6295 (2016).

J-W. Lee , D-J. Seol , A-N. Cho , and N-G. Park : High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3 . Adv. Mater. 26, 4991 (2014).

M. Kulbak , D. Cahen , and G. Hodes : How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 6, 2452 (2015).

Y. Ogomi , A. Morita , S. Tsukamoto , T. Saitho , N. Fujikawa , Q. Shen , T. Toyoda , K. Yoshino , S.S. Pandey , T. Ma , and S. Hayase : CH3NH3Sn x Pb(1−x)I3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 5, 1004 (2014).

J.H. Noh , S.H. Im , J.H. Heo , T.N. Mandal , and S.I. Seok : Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764 (2013).

G.E. Eperon , S.D. Stranks , C. Menelaou , M.B. Johnston , L.M. Herz , and H.J. Snaith : Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982 (2014).

M. Saliba , T. Matsui , K. Domanski , J-Y. Seo , A. Ummadisingu , S.M. Zakeeruddin , J-P. Correa-Baena , W.R. Tress , A. Abate , A. Hagfeldt , and M. Grätzel : Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206 (2016).

J-Y. Jeng , Y-F. Chiang , M-H. Lee , S-R. Peng , T-F. Guo , P. Chen , and T-C. Wen : CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727 (2013).

S. Mori , T. Gotanda , Y. Nakano , M. Saito , K. Todori , and M. Hosoya : Investigation of the organic solar cell characteristics for indoor LED light applications. Jpn. J. Appl. Phys. 54, 071602 (2015).

B.I. MacDonald , A. Martucci , S. Rubanov , S.E. Watkins , P. Mulvaney , and J.J. Jasieniak : Layer-by-layer assembly of sintered CdSe x Te1–x nanocrystal solar cells. ACS Nano 6, 5995 (2012).

J. Hwang , E-G. Kim , J. Liu , J-L. Bredas , A. Duggal , and A. Kahn : Photoelectron spectroscopic study of the electronic band structure of polyfluorene and fluorene-arylamine copolymers at interfaces. J. Phys. Chem. C 111, 1378 (2007).

S. Ryu , J.H. Noh , N.J. Jeon , Y.C. Kim , W.S. Yang , J. Seo , and S.I. Seok : Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci. 7, 2614 (2014).

J. Burschka , N. Pellet , S-J. Moon , R. Humphry-Baker , P. Gao , M.K. Nazeeruddin , and M. Grätzel : Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013).

F. Zuo , S.T. Williams , P-W. Liang , C-C. Chueh , C-Y. Liao , and A.K-Y. Jen : Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells. Adv. Mater. 26, 6454 (2014).

K. Sugiyama , H. Ishii , Y. Ouchi , and Kazuhiko Seki : Dependence of indium-tin-oxide work function on surface cleaning method as studied by ultraviolet and X-ray photoemission spectroscopies. J. Appl. Phys. 87, 295 (2000).

J.R. Manders , S-W. Tsang , M.J. Hartel , T-H. Lai , S. Chen , C.M. Amb , J.R. Reynolds , and F. So : Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv. Funct. Mater. 23, 2993 (2013).

J.H. Kim , S.T. Williams , N. Cho , C-C. Chueh , and A.K-Y. Jen : Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating. Adv. Energy Mater. 5, 1401229 (2015).

H. Peisert , M. Knupfer , F. Zhang , A. Petr , L. Dunsch , and J. Fink : Charge transfer and doping at organic/organic interfaces. Appl. Phys. Lett. 83, 3930 (2003).

N. Koch , A. Elschner , J.P. Rabe , and R.L. Johnson : Work function independent hole-injection barriers between pentacene and conducting polymers. Adv. Mater. 17, 330 (2005).

K. Marumoto , T. Fujimori , M. Ito , and T. Mori : Charge formation in pentacene layers during solar-cell fabrication: Direct observation by electron spin resonance. Adv. Energy Mater. 2, 591 (2012).

R. Munir , A.D. Sheikh , M. Abdelsamie , H. Hu , L. Yu , K. Zhao , T. Kim , O. Tall , R. Li , and D-M. Smilgies : Hybrid perovskite thin-film photovoltaics: In situ diagnostics and importance of the precursor solvate phases. Adv. Mater. 29, 1604113 (2017).

Y. Shao , Z. Xiao , C. Bi , Y. Yuan , and J. Huang : Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014).

Y. Yang , M. Yang , Z. Li , R. Crisp , K. Zhu , and M.C. Beard : Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: Influence of exciton binding energy. J. Phys. Chem. Lett. 6, 4688 (2015).

M.M. Lee , J. Teuscher , T. Miyasaka , T.N. Murakami , and H.J. Snaith : Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643 (2012).

W. Chen , Y. Wu , Y. Yue , J. Liu , W. Zhang , X. Yang , H. Chen , E. Bi , I. Ashraful , M. Gratzel , and L. Han : Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944 (2015).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
WORD
Supplementary Materials

Gotanda supplementary material
Figures S1-S4

 Word (108 KB)
108 KB

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 20 *
Loading metrics...

Abstract views

Total abstract views: 68 *
Loading metrics...

* Views captured on Cambridge Core between 13th July 2017 - 24th July 2017. This data will be updated every 24 hours.