Skip to main content
    • Aa
    • Aa

Effects of gas blowing condition on formation of mixed halide perovskite layer on organic scaffolds

  • Takeshi Gotanda (a1), Shigehiko Mori (a1), Haruhi Oooka (a1), Hyangmi Jung (a1), Hideyuki Nakao (a1), Kenji Todori (a1) and Yutaka Nakai (a1)...

Perovskite solar cells are promising for realizing high power conversion efficiency (PCE) with low manufacturing costs, but efficient coating methods are needed for commercialization. Here, a gas blowing method was used to fabricate perovskite solar cells and was found to create a smooth perovskite layer and to prevent voids in large-area cells, when organic materials were used as scaffolds for forming the perovskite. A PCE of 13% in a 1 cm2 active area is achieved by tuning the band-gap energy of MAPbX3 via substitution of Br for I ions in X sites. Incorporation of a poly(3,4-ethylenedioxythiophene) hole transport layer with a higher work function increased the open circuit voltage of the solar cells. All layers of the cells were fabricated at low temperatures (<140 °C), which makes it possible to incorporate a polymer substrate for producing flexible solar cells and high-throughput fabrication.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Sam Zhang

Hide All
1. KojimaA., TeshimaK., ShiraiY., and MiyasakaT.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009).
2. GreenM.A., EmeryK., HishikawaY., WartaW., DunlopE.D., LeviD.H., and Ho-BaillieA.W.Y.: Solar cell efficiency tables (version 49). Prog. Photovoltaics 25, 3 (2017).
3. ShaW.E.I., RenX., ChenL., and ChoyW.C.H.: The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 106, 221104 (2015).
4. ServiceR.F.: Perovskite solar cells gear up to go commercial. Science 354, 1214 (2016).
5. AhnN., SonD-Y., JangI-H., KangS.M., ChoiM., and ParkN-G.: Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 137, 8696 (2015).
6. KohT.M., ShanmugamV., SchlipfJ., OesinghausL., BuschbaumP.M., RamakrishnanN., SwamyV., MathewsN., BoixP.P., and MhaisalkarS.G.: Nanostructuring mixed-dimensional perovskites: A route toward tunable, efficient photovoltaics. Adv. Mater. 28, 3653 (2016).
7. JeonN.J., NohJ.H., KimY.C., YangW.S., RyuS., and SeokS.I.: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897 (2014).
8. HuangF., DkhissiY., HuangW., XiaoM., BenesperiI., RubanovS., ZhuY., LinX., JiangL., ZhouY., Gray-WealeA., EtheridgeJ., McNeillC.R., CarusoR.A., BachU., SpicciaL., and ChengY-B.: Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells. Nano Energy 10, 10 (2014).
9. MengL., YouJ., GuoT-F., and YangY.: Recent advances in the inverted planar structure of perovskite solar cells. Acc. Chem. Res. 49, 155 (2016).
10. LiX., BiD., YiC., DécoppetJ-D., LuoJ., ZakeeruddinS.M., HagfeldtA., and GrätzelM.: A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353, 58 (2016).
11. SongJ., ZhengE., BianJ., WangX-F., TianW., SanehiracY., and MiyasakacT.: Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells. J. Mater. Chem. A 3, 10837 (2015).
12. WangQ., DongQ., LiT., GruvermanA., and HuangJ.: Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv. Mater. 28, 6734 (2016).
13. GotandaT., MoriS., MatsuiA., and OookaH.: Effects of gas blowing condition on formation of perovskite layer on organic scaffolds. Chem. Lett. 45, 822 (2016).
14. XiaB., WuZ., DongH., XiJ., WuW., LeiT., XiK., YuanF., JiaoB., XiaoL., GongbQ., and HouX.: Formation of ultrasmooth perovskite films toward, highly efficient inverted planar heterojunction solar cells by micro-flowing anti-solvent deposition in air. J. Mater. Chem. A 4, 6295 (2016).
15. LeeJ-W., SeolD-J., ChoA-N., and ParkN-G.: High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3 . Adv. Mater. 26, 4991 (2014).
16. KulbakM., CahenD., and HodesG.: How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 6, 2452 (2015).
17. OgomiY., MoritaA., TsukamotoS., SaithoT., FujikawaN., ShenQ., ToyodaT., YoshinoK., PandeyS.S., MaT., and HayaseS.: CH3NH3Sn x Pb(1−x)I3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 5, 1004 (2014).
18. NohJ.H., ImS.H., HeoJ.H., MandalT.N., and SeokS.I.: Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764 (2013).
19. EperonG.E., StranksS.D., MenelaouC., JohnstonM.B., HerzL.M., and SnaithH.J.: Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982 (2014).
20. SalibaM., MatsuiT., DomanskiK., SeoJ-Y., UmmadisinguA., ZakeeruddinS.M., Correa-BaenaJ-P., TressW.R., AbateA., HagfeldtA., and GrätzelM.: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206 (2016).
21. ZimmermannE., EhrenreichP., PfadlerT., DormanJ.A., WeickertJ., and Schmidt-MendeL.: Erroneous efficiency reports harm organic solar cell research. Nat. Photonics 8, 669 (2014).
22. JengJ-Y., ChiangY-F., LeeM-H., PengS-R., GuoT-F., ChenP., and WenT-C.: CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727 (2013).
23. MoriS., GotandaT., NakanoY., SaitoM., TodoriK., and HosoyaM.: Investigation of the organic solar cell characteristics for indoor LED light applications. Jpn. J. Appl. Phys. 54, 071602 (2015).
24. NishiH., NaganoT., KuwabataS., and TorimotoT.: Controllable electronic energy structure of size-controlled Cu2ZnSnS4 nanoparticles prepared by a solution-based approach. Phys. Chem. Chem. Phys. 16, 672 (2014).
25. MacDonaldB.I., MartucciA., RubanovS., WatkinsS.E., MulvaneyP., and JasieniakJ.J.: Layer-by-layer assembly of sintered CdSe x Te1–x nanocrystal solar cells. ACS Nano 6, 5995 (2012).
26. HwangJ., KimE-G., LiuJ., BredasJ-L., DuggalA., and KahnA.: Photoelectron spectroscopic study of the electronic band structure of polyfluorene and fluorene-arylamine copolymers at interfaces. J. Phys. Chem. C 111, 1378 (2007).
27. RyuS., NohJ.H., JeonN.J., KimY.C., YangW.S., SeoJ., and SeokS.I.: Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci. 7, 2614 (2014).
28. BurschkaJ., PelletN., MoonS-J., Humphry-BakerR., GaoP., NazeeruddinM.K., and GrätzelM.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013).
29. LimK., KimH-B., JeongJ., KimH., KimJ.Y., and LeeT-W.: Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function. Adv. Mater. 26, 6461 (2014).
30. ZuoF., WilliamsS.T., LiangP-W., ChuehC-C., LiaoC-Y., and JenA.K-Y.: Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells. Adv. Mater. 26, 6454 (2014).
31. SugiyamaK., IshiiH., OuchiY., and SekiKazuhiko: Dependence of indium-tin-oxide work function on surface cleaning method as studied by ultraviolet and X-ray photoemission spectroscopies. J. Appl. Phys. 87, 295 (2000).
32. MandersJ.R., TsangS-W., HartelM.J., LaiT-H., ChenS., AmbC.M., ReynoldsJ.R., and SoF.: Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv. Funct. Mater. 23, 2993 (2013).
33. KimJ.H., WilliamsS.T., ChoN., ChuehC-C., and JenA.K-Y.: Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating. Adv. Energy Mater. 5, 1401229 (2015).
34. PeisertH., KnupferM., ZhangF., PetrA., DunschL., and FinkJ.: Charge transfer and doping at organic/organic interfaces. Appl. Phys. Lett. 83, 3930 (2003).
35. KochN., ElschnerA., RabeJ.P., and JohnsonR.L.: Work function independent hole-injection barriers between pentacene and conducting polymers. Adv. Mater. 17, 330 (2005).
36. MarumotoK., FujimoriT., ItoM., and MoriT.: Charge formation in pentacene layers during solar-cell fabrication: Direct observation by electron spin resonance. Adv. Energy Mater. 2, 591 (2012).
37. MunirR., SheikhA.D., AbdelsamieM., HuH., YuL., ZhaoK., KimT., TallO., LiR., and SmilgiesD-M.: Hybrid perovskite thin-film photovoltaics: In situ diagnostics and importance of the precursor solvate phases. Adv. Mater. 29, 1604113 (2017).
38. ShaoY., XiaoZ., BiC., YuanY., and HuangJ.: Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014).
39. YangY., YangM., LiZ., CrispR., ZhuK., and BeardM.C.: Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: Influence of exciton binding energy. J. Phys. Chem. Lett. 6, 4688 (2015).
40. LeeM.M., TeuscherJ., MiyasakaT., MurakamiT.N., and SnaithH.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643 (2012).
41. ChenW., WuY., YueY., LiuJ., ZhangW., YangX., ChenH., BiE., AshrafulI., GratzelM., and HanL.: Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944 (2015).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary Materials

Gotanda supplementary material
Figures S1-S4

 Word (108 KB)
108 KB


Full text views

Total number of HTML views: 9
Total number of PDF views: 46 *
Loading metrics...

Abstract views

Total abstract views: 306 *
Loading metrics...

* Views captured on Cambridge Core between 13th July 2017 - 22nd October 2017. This data will be updated every 24 hours.