Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T23:03:32.304Z Has data issue: false hasContentIssue false

Effects of oxygen partial pressure on the crystallization of amorphous Bi–Sr–Ca–Cu–O and Bi–Sr–Ca–Cu–O + Ag

Published online by Cambridge University Press:  03 March 2011

M.J. Kramer
Affiliation:
Ames Laboratory, Iowa State University, Ames, Iowa 50011
L. Margulies
Affiliation:
Ames Laboratory, Iowa State University, Ames, Iowa 50011
S.R. Arrasmith
Affiliation:
Ames Laboratory, Iowa State University, Ames, Iowa 50011
K.W. Dennis
Affiliation:
Ames Laboratory, Iowa State University, Ames, Iowa 50011
J.C. Lang
Affiliation:
Ames Laboratory, Iowa State University, Ames, Iowa 50011
R.W. McCallum
Affiliation:
Ames Laboratory, Iowa State University, Ames, Iowa 50011
P.K. Gallagher
Affiliation:
Departments of Chemistry and Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
Get access

Abstract

The temperatures and pathways of crystallization for amorphous Bi–Sr–Ca–Cu–O are strongly dependent on oxygen partial pressure (Po2), the oxidation state of the glass, and the presence of Ag. Reducing the Po2 from 1 to 0 bar lowers the onset of melting 100 °C, but does not change the onset of crystallization. Decreasing Po2 does inhibit the formation of (CaSr)CuO3 (011). Although Ag appears to be immiscible in Bi–Sr–Ca–Cu–O, finely distributed Ag lowers the onset of melting by 20 to 35 °C, depending on Po2. In oxygen-deficient glass, two exotherms are observed upon heating. The first exotherm at 460 °C is independent of Po2, and Ag and corresponds with the formation of Bi2Sr2CuO6 (Bi-2201). The second exotherm occurs at 486 °C with Ag or 500 °C without Ag. The onset temperature of the second exotherm does not change with Po2, but the exotherm decreases in intensity with decreasing Po2. EXAFS indicates that in the as-quenched amorphous material, Cu is in a reduced state. Annealing the amorphous material in oxygen below the first exotherm (i.e., glass relaxation) increases the oxidation state of the Cu to that necessary for the formation of the Bi2Sr2CaCu2O8 (Bi-2212) without additional oxygen diffusion. This relaxation of the glass increases the crystallization temperature of the Bi-2201 to 500 °C. The crystallization sequence of Bi-2201 to Bi-2212 occurs at all Po2 ≥ 0.1 bar, but the composition of the secondary phases changes in the unrelaxed glass. Relaxing the glass eliminates liquid formation at low temperatures, allowing for rapid formation of the Bi-2212 phase with minimal formation of secondary phases for 0.1 ⋚ Po2 ⋚ 0.2 bar.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Xu, M., Polonka, J., Goldman, A. I., and Finnemore, D. K., Appl. Supercon. 1, 53 (1993).CrossRefGoogle Scholar
2Xu, M., Polonka, J., Goldman, A. I., and Finnemore, D. K., Appl. Supercon. 1, 1547 (1993).CrossRefGoogle Scholar
3Arrasmith, S. R., Kramer, M. J., Merkle, B. D., Holesinger, T. G., and McCallum, R.W., J. Mater. Res. 8, 1247 (1993).Google Scholar
4Guo, Y. C., Liu, H. K., and Dou, S. X., Physica C 200, 147 (1992).Google Scholar
5Kao, S., El-Hamalawy, A., and Ng, K. Y. S., J. Supercon. 5, 301 (1992).CrossRefGoogle Scholar
6Jacobs, K. R., Miller, T. A., Finnemore, D. K., Goldman, A. I., LeBeau, S.E., and Righi, J., IEEE Trans. Magn. 27, 917 (1991).CrossRefGoogle Scholar
7Fang, Y., Danyluk, S., Goretta, K. C., Chen, N., Runde, M., Rothman, S. J., and Routbort, J. L., Appl. Phys. Lett. 60, 2291 (1992).Google Scholar
8Massalker, Y., Sembira, A. N., and Baram, J. C., Physica C 209, 295 (1993).CrossRefGoogle Scholar
9Holesinger, T. G., Miller, D. J., Chumbley, L. S., Kramer, M. J., and Dennis, K. W., Physica C 202, 109 (1992).Google Scholar
10Hwang, C. H. and Kim, G., Supercon. Sci. Technol. 5, 586 (1992).CrossRefGoogle Scholar
11Matheis, D. P., Misture, S. T., and Snyder, R. L., Physica C 207, 134 (1993).CrossRefGoogle Scholar
12Holesinger, T. G., Miller, D. J., and Chumbley, L. S., J. Mater. Res. 7, 1658 (1992).CrossRefGoogle Scholar
13Togano, K., Kumakura, H., Kase, J., Li, Q., Ostenson, J. E., and Finnemore, D. K., J. Appl. Phys. 70, 6966 (1991).CrossRefGoogle Scholar
14Kramer, M. J., McCallum, R.W., Arrasmith, S. R., Margulies, L., and Holesinger, T. G., J. Elect. Mat. (in press).Google Scholar
15Runde, M., Routbort, J. L., Rothman, S. J., Goretta, K. C., Mundy, J. N., Xu, X., and Baker, J. E., Phys. Rev. B 45, 7375 (1992).CrossRefGoogle Scholar
16Larbalestier, D. C. and Maley, M. P., MRS Bull. Aug. 50 (1993).Google Scholar