Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T01:16:31.879Z Has data issue: false hasContentIssue false

Effects of pressure on nano- and micro-scale morphological changes in conjugated polymer photovoltaic cells

Published online by Cambridge University Press:  29 September 2016

Benjamin Agyei-Tuffour
Affiliation:
Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Nigeria; and Department of Materials Science and Engineering, School of Engineering Sciences, University of Ghana, Legon-Accra, Ghana
Egidius Rutatisbwa Rwenyagila
Affiliation:
Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Nigeria
Joseph Asare
Affiliation:
Department of Theoretical and Applied Physics, African University of Science and Technology, Abuja, Nigeria
Martiale Gaetan Zebaze Kana
Affiliation:
Department of Materials Science and Engineering, Kwara State University, Ilorin, Kwara State, Nigeria
Winston O. Soboyejo*
Affiliation:
Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Nigeria; and Princeton Institute of Materials Technology (PRISM), Department of Mechanical and Aerospace Engineering, Princeton University, New Jersey, USA
*
a) Address all correspondence to this author. e-mail: soboyejo@princeton.edu
Get access

Abstract

This paper presents the results of an experimental study of the effects of pressure on polymer chain alignments in poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) blends that are used in bulk heterojunction organic photovoltaic cells (OPVs). The P3HT:PCBM blends on glass were subjected to pressure and annealing at 140 °C. The surface morphologies, nano-/micro-structures and the chain alignments were analyzed using atomic force microscopy techniques and grazing incidence x-ray scattering. The current–voltage characteristics of the resulting devices are also shown to change significantly with changes in the nano-/micro-structures. The polymer chains were aligned in the direction of the applied pressure (edge-on), which reduced the lamellae spacing between the polymer units and increased the degree of crystallinity. The increased crystallinity plays significant role in the current–voltage enhancements. The implications of the study are discussed for the design and control of the nano/microstructures of bulk heterojunction organic solar cells.

Type
Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Darling, S.B., You, F., Veselka, T.D., and Velosa, A.: Assumptions and the levelized cost of energy for photovoltaics. Energy Environ. Sci. 4, 31333139 (2011).CrossRefGoogle Scholar
Miller, S., Fanchini, G., Lin, Y-Y., Li, C., Chen, C-W., Su, W-F., and Chowolla, M.: Investigation of nanoscale morphological changes in organic photovoltaics during solvent vapor annealing. J. Mater. Chem. 18, 306312 (2008).CrossRefGoogle Scholar
Organic Photovoltaics: Mechanisms, Materials, and Devices, Sun, S-S. and Sariciftci, N.S. eds.; Taylor & Francis: London, 2005.Google Scholar
Li, G., Shrotriya, V., Huang, J.S., Yao, Y., Moriarty, T., Emery, K., and Yang, Y.: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864 (2005).CrossRefGoogle Scholar
Reyes-Reyes, M., Kim, K., and Carroll, D.L.: High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends. Appl. Phys. Lett. 87, 083506 (2005).Google Scholar
Sariciftci, N.S., Smilowitz, L., Heeger, A.J., and Wudl, F.: Photoinduced electron transfer from a conducting polymer to Buckminsterfullerene. Science 258, 1474 (1992).Google Scholar
Yu, G., Gao, J., Hummelen, J.C., Wudl, F., and Heeger, A.J.: Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789 (1995).CrossRefGoogle Scholar
Lee, S-H., Kim, J-H., Shim, T-H., and Park, J-G.: Effect of interface thickness on power conversion efficiency of polymer photovoltaic cells. Electron. Mater. Lett. 5, 47 (2009).Google Scholar
Ray, B. and Alam, M.A.: Random vs. regularized OPV: Limits of performance gain of organic bulk heterojunction solar cells by morphology engineering. Sol. Energy Mater. Sol. Cells 99, 204212 (2012).CrossRefGoogle Scholar
Pandey, S., Takashima, W., Nagamatsu, S., Endo, T., Rikukawa, M., and Kaneto, K.: Regioregularity vs. regio-randomness: Effect on photocarrier transport in poly(3-hexylthiophene). Jpn. J. Appl. Phys. 39(2), 9497 (2000).Google Scholar
Bao, Z., Dodabalapur, A., and Lovinger, A.: Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl. Phys. Lett. 69, 4108 (1996).Google Scholar
Sirringhaus, H., Tessler, N., and Friend, R.H.: Integrated optoelectronic devices based on conjugated polymers. Science 280, 1741 (1998).Google Scholar
Ullmann, A., Ficker, J., Fix, W., Rost, H., Clemens, W., McCulloch, I., and Giles, M.: High performance organic field-effect transistors and integrated inverters. Mater. Res. Soc. Symp. Proc. 665, 265 (2001).Google Scholar
Akogwu, O., Akande, W., Tong, T., and Soboyejo, W.: Dendrite growth in annealed polymer blends for use in bulk heterojunction solar cells. J. Appl. Phys. 110, 103517 (2011).Google Scholar
Deibel, C. and Dyakonov, V.: Polymer–fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 73, 096401 (2010).Google Scholar
Pavlopoulou, E., Kim, C.S., Lee, S.S., Chen, Z., Facchetti, A., Toney, M.F., and Loo, Y-L.: Tuning the morphology of all-polymer OPVs through altering polymer−solvent interactions. Chem. Mater. 26, 50205027 (2014).Google Scholar
Hiszpanski, A.M., Baur, R.M., Kim, B., Tremblay, N.J., Nuckolls, C., Woll, A.R., and Loo, Y-L.: Tuning polymorphism and orientation in organic semiconductor thin films via post-deposition processing. J. Am. Chem. Soc. 136, 1574915756 (2014).Google Scholar
Germack, D.S., Chan, C.K., Kline, R.J., Fischer, D.A., Gundlach, D.J., Toney, M.F., Richter, L.J., and DeLongchamp, D.M.: Interfacial segregation in polymer/fullerene blend films for photovoltaic devices. Macromolecules 43, 38283836 (2010).Google Scholar
Woo, C.H., Thompson, B.C., Kim, B.J., Toney, M.F., and Freichet, J.M.J.: The influence of poly(3-hexylthiophene) regioregularity on fullerene-composite solar cell performance. J. Amer. Chem. Soc. 130, 1632416329 (2008).Google Scholar
Petoukhoff, C.E. and O'Carroll, D.M.: Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces. Nat. Commun. 6, 7899 (2015).Google Scholar
Shen, Z. and O'Carroll, D.M.: Nanoporous silver thin Films: Multifunctional platforms for influencing chain morphology and optical properties of conjugated polymers. Adv. Funct. Mater. 25, 33023313 (2015).Google Scholar
Agyei-Tuffour, B., Rwenyagila, E.R., Asare, J., Oyewole, O.K., Zebaze Kana, M.G., O'Carroll, D.M., and Soboyejo, W.O.: Influence of pressure on contacts between layers in organic photovoltaic cells. Adv. Mater. Res. 1132, 204216 (2016).Google Scholar
Du, J., Anye, V.C., Vodah, E.O., Tong, T., Zebaze Kana, M.G., and Soboyejo, W.O.: Pressure-assisted fabrication of organic light emitting diodes with MoO3 hole-injection layer materials. J. Appl. Phys. 115, 233703 (2014).CrossRefGoogle Scholar
Kim, J.H., Seo, S., and Lee, H.H.: Nanovoid nature and compression effects in organic light emitting diode. Appl. Phys. Lett. 90, 143521 (2007).Google Scholar
Fina, M., Liu, D., Ren, L., and Mao, S.S.: Improving organic light emitting diode performance with patterned structures. Appl. Phys. A 105, 323327 (2011).Google Scholar
Fan, X., Sun, J., Wang, F., Chu, Z., Wang, P., Dong, Y., Hu, R., Tang, B.Z., and Zou, D.: Photoluminescence and electroluminescence of hexaphenylsilole are enhanced by pressurization in the solid state. Chem. Commun. 26, 29892991 (2008).Google Scholar
Jiang, Z.Y. and Cao, X.A.: Stress-induced current and luminescence modulations in an organic light-emitting device. Appl. Phys. Lett. 97, 203304 (2010).CrossRefGoogle Scholar
Kim, C. and Forrest, S.: Fabrication of organic light-emitting devices by low-pressure cold welding. Adv. Mater. 15, 541545 (2003).CrossRefGoogle Scholar
Cao, Y., Kim, C., Forrest, S.R., and Soboyejo, W.: An investigation of the effects of layer thickness and dust particles on cold welding in organic electronics fabrication. J. Appl. Phys. 98, 033713 (2005).Google Scholar
Du, J., Tong, T., Akande, W., Tsakiridou, A., and Soboyejo, W.: Pressure effects on the lamination of organic light-emitting diodes. J. Disp. Technol. 9, 601606 (2013).Google Scholar
Guo, Y., Ma, X.J., and Su, Z.H.: Interfacial interactions between poly(3-hexylthiophene) and substrates. Macromolecules 46, 27332739 (2013).Google Scholar
Tong, T., Babatope, B., Admassie, S., Meng, J., Akwogu, O., Akande, W., and Soboyejo, W.O.: Adhesion in organic structures. J. Appl. Phys. 106, 083708 (2009).Google Scholar
Zhou, W., Shi, J., Lv, L., Chen, L., and Chen, Y.: A mechanistic investigation of morphology evolution in P3HT-PCBM films induced by liquid crystalline molecules under external electric field. Phys. Chem. Chem. Phys. 17, 387397 (2015).CrossRefGoogle ScholarPubMed
Tremel, K. and Ludwigs, S.: Morphology of P3HT in thin films in relation to optical and electrical properties. Adv. Polym. Sci. 265, 3982 (2014). doi: 10.1007/12_2014_288.Google Scholar
Bockmann, M., Schemme, T., de Jong, D.H., Denz, C., Heuer, A., and Doltsinis, N.L.: Structure of P3HT crystals, thin films, and solutions by UV/Vis spectral analysis. Phys. Chem. Chem. Phys. 17, 28616 (2015).Google Scholar
Shaheen, S.E., Brabec, C.J., Sariciftci, N.S., Padinger, F., Fromherz, T., and Hummelen, J.C.: 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841 (2001).Google Scholar
Martens, T., D'Haen, J., Munters, T., Beelen, Z., Goris, L., Manca, J., D'Olieslaeger, M., Vanderzande, D., De Schepper, L., and Andriessen, R.: Disclosure of the nanostructure of MDMO-PPV: PCBM bulk hetero-junction organic solar cells by a combination of SPM and TEM. Synth. Met. 138, 243 (2003).Google Scholar
Baibarac, M., Lapkowski, M., Pron, A., Lefrant, S., and Baltog, I.: SERS spectra of poly(3-hexylthiophene) in oxidized and unoxidized states. J. Raman Spectrosc. 29, 825 (1998).Google Scholar
Klein, M.V. and Cardona, M.: In Light Scattering in Solids I, Topics Appl. Phys., Vol. 8. (Springer, Berlin, 1975).Google Scholar
Campoy-Quiles, M., Ferenczi, T., Agostinelli, T., Etchegoin, P.G., Kim, Y., Anthopoulos, T.D., Stavrinou, P.N., Bradley, D.C., and Nelson, J.: Morphology evolution via self-organization and polymer:fullerene solar cell blends. Nat. Mater. 7, 158 (2008).Google Scholar
Chirvase, D., Parisi, J., Hummelen, J.C., and Dyakonov, V.: Influence of nanomorphology on the photovoltaic action of polymer:fullerene composites. Nanotechnology 15, 1317 (2004).Google Scholar