Skip to main content

Effects of sintering temperature on structure and properties of BY-PT-PMN ternary piezoelectric ceramics

  • Liu Hai (a1), Zhang Bo-Ping (a1), Pei Yu (a1), Zhao Lei (a1), Wang Kai-sheng (a1) and Liu Yan-tao (a1)...

0.7(0.1BiYbO3-0.9PbTiO3)-0.3 Pb(Mg1/3Nb2/3)O3 (0.7BYPT-0.3PMN) ternary piezoelectric ceramics were prepared by a columbite precursor method. The effects of sintering temperature on the crystalline phase, microstructure, and electrical properties of the ceramics were systematically investigated. There were two phases coexisting in the 0.7BYPT-0.3PMN ceramics sintered at 1100–1250 °C, one is the perovskite host phase with tetragonal symmetry and the other is Yb2Ti2O7 impurity phase. It was observed that, with increasing sintering temperature, the piezoelectric constant d 33, dielectric constant εr, planar electromechanical coupling coefficient k p, and Curie temperature T C increased initially and then decreased. An apparent structure distortion could also be observed in samples synthesized at high sintering temperature due to the severe volatilization of Pb and Bi. The optimum performances of the material were obtained for samples sintered at 1150 °C with d 33 = 100 pC/N, εr = 494, k p = 25.4%, and T C = 380 °C, respectively. It can be ascribed to the combined effect of a higher density, structural homogeneity with decreased tetragonality as well as a small amount of pyrochlore phase.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All
1. Jaffe, B., Cook, W.R., and Jaffe, H.: Piezoelectric Ceramics (Academic Press, London, England, 1971); pp. 135144.
2. Chua, B.W., Lu, L., Lai, M.O., and Wong, G.H.L.: Effects of complex additives on toughness and electrical properties of PZT ceramics. J. Alloys Compd. 381, 272277 (2004).
3. Randall, C.A., Kelnberger, A., Yang, G.Y., Eitel, R.E., and Shrout, T.R.: High strain piezoelectric multilayer actuators—A material science and engineering challenge. J. Electroceram. 14, 177191 (2005).
4. Vittayakorn, N., Rujijanagul, G., and Cann, D.P.: Investigation of the influence of thermal treatment on the morphologies, dielectric and ferroelectric properties of PZT-based ceramics. J. Alloys Compd. 440, 259264 (2007).
5. Shim, D., Pak, J., Nam, K., and Park, G.: Enhanced fatigue characteristics of sol-gel derived PZT thin films. J. Alloys Compd. 449, 3235 (2008).
6. Wang, J.N., Wang, L.D., Li, W.L., and Fei, W.D.: Dependence of lattice distortion of monoclinic phase on film thickness in Pb(Zr0.58Ti0.42)O3 thin films. J. Alloys Compd. 509, 33473352 (2011).
7. Damjanovic, D.: Materials for high temperature piezoelectric transducers. Curr. Opin. Solid State Mater. Sci. 3, 469 (1998).
8. Eitel, R.E., Randall, C.A., Shrout, T.R., Rehrig, P.W., Hackenberger, W., and Park, S.E.: New high temperature morphotropic phase boundary piezoelectrics based on Bi(Me)O3-PbTiO3 ceramics. Jpn. J. Appl. Phys. 40, 59996002 (2001).
9. Eitel, R.E., Randall, C.A., Shrout, T.R., and Park, S.E.: Preparation and characterization of high temperature perovskite ferroelectrics in the solid-solution (1-x)BiScO3-xPbTiO3 . Jpn. J. Appl. Phys. 41, 20992104 (2002).
10. Randall, C.A., Eitel, R.E., Shrout, T.R., Woodward, D.I., and Reaney, I.M.: Transmission electron microscopy investigation of the high temperature BiScO3-PbTiO3 piezoelectric ceramic system. J. Appl. Phys. 93, 92719274 (2003).
11. Duan, R.R., Speyer, R.F., Alberta, E., and Shrout, T.R.: High curie temperature perovskite BiInO3-PbTiO3 ceramics. J. Mater. Res. 19, 21852193 (2004).
12. Zhang, S.J., Eitel, R.E., Randall, C.A., Shrout, T.R., and Alberta, E.F.: Manganese-modified BiScO3-PbTiO3 piezoelectric ceramic for high-temperature shear mode sensor. Appl. Phys. Lett. 86, 262904 (2005).
13. Choi, S.M., Stringer, C.J., Shrout, T.R., and Randall, C.A.: Structure and property investigation of a Bi-based perovskite solid solution: (1-x)Bi(Ni1/2Ti1/2)O3-xPbTiO3 . J. Appl. Phys. 98, 034108 (2005).
14. Stringer, C.J., Shrout, T.R., Randall, C.A., and Reaney, I.M.: Classification of transition temperature behavior in ferroelectric PbTiO3-Bi(Me'Me')O3 solid solutions. J. Appl. Phys. 99, 024106 (2006).
15. Qureshi, A.H., Shabbir, G., and Hall, D.A.: On the synthesis and dielectric studies of (1-x)Bi(Mg1/2Zr1/2)O3-xPbTiO3 piezoelectric ceramic system. Mater. Lett. 61, 44824484 (2007).
16. Yao, Z.H., Liu, H.X., Liu, Y., Wu, Z.H., Cao, M.H., and Hao, H.: High-temperature relaxor cobalt-doped (1-x)BiScO3-xPbTiO3 piezoelectric ceramics. Appl. Phys. Lett. 92, 142905 (2008).
17. Rai, R., Sinha, A., Sharmac, S., and Sinha, N.K.P.: Investigation of structural and electrical properties of (1-x)Bi0.5Mg0.5TiO3-(x)PbTiO3 ceramic system. J. Alloys Compd. 486, 273277 (2009).
18. Yamazaki, H., Shimura, T., Sakamoto, W., and Yogo, T.: Synthesis and properties of BiScO3-PbTiO3 powders and thin films using metal-organic precursor solutions. J. Ceram. Soc. Jpn. 118, 631635 (2010).
19. Yao, Z.H., Liu, H.X., Hao, H., and Cao, M.H.: Structure, electrical properties, and depoling mechanism of BiScO3-PbTiO3-Pb(Zn1/3Nb2/3)O3 high-temperature piezoelectric ceramics. J. Appl. Phys. 109, 014105 (2011).
20. Zhang, S.J., Xia, R., Lebrun, L., Anderson, D., and Shrout, T.R.: Piezoelectric materials for high power, high temperature applications. Mater. Lett. 59, 34713475 (2005).
21. Ansell, T.Y. and Cann, D.P.: High temperature piezoelectric ceramics based on (1-x)[BiScO3+Bi(Ni1/2Ti1/2)O3]-xPbTiO3 . Mater. Lett. 80, 8790 (2012).
22. Sterianou, I., Reaney, I.M., Sinclair, D.C., Bell, A.J., and Hall, D.A.: High-temperature (1-x)BiSc1/2Fe1/2O3-xPbTiO3 piezoelectric ceramics. Appl. Phys. Lett. 87, 242901 (2005).
23. Sterianou, I., Sinclair, D.C., Reaney, I.M., Comyn, T.P., and Bell, A.J.: Investigation of high Curie temperature (1-x)BiSc1-yFeyO3-xPbTiO3 piezoelectric ceramics. J. Appl. Phys. 106, 084107 (2009).
24. Sebastian, T., Sterianou, I., Sinclair, D.C., Bell, A.J., Hall, D.A., and Reaney, I.M.: High temperature piezoelectric ceramics in the Bi(Mg1/2Ti1/2)O3-BiFeO3-BiScO3-PbTiO3 system. J. Electroceram. 25(2–4), 130134 (2010).
25. Rai, R., Kholkin, A., Pandey, S., and Singh, N.K.: Investigation of structural, electrical and magnetic properties of BiFeO3-Bi(MgTi)O3-PbTiO3 ceramic system. J. Alloys Compd. 488, 459464 (2009).
26. Woodward, D.I., Reaney, I.M., Eitel, R., and Randall, C.A.: Crystal and domain structure of the BiFeO3-PbTiO3 solid solution. J. Appl. Phys. 94, 33133318 (2003).
27. Chen, J., Wang, X., Jo, W., and Rodel, J.: Microstructure and electrical properties of (1-x)Bi(Li1/3Zr2/3)O3-xPbTiO3 piezoelectric ceramics. J. Am. Ceram. Soc. 93, 16921696 (2010).
28. Randall, C.A., Eitel, R., Jones, B., and Shrout, T.R.: Investigation of a high T c piezoelectric system: (1-x)Bi(Mg1/2Ti1/2)O3-(x)PbTiO3 . J. Appl. Phys. 95, 36333639 (2004).
29. Suchomel, M.R. and Davies, P.K.: Enhanced tetragonality in (x)PbTiO3-(1-x)Bi(Zn1/2Ti1/2)O3 and related solid solution systems. Appl. Phys. Lett. 86, 262905 (2005).
30. Zhang, S.J., Stringer, C., Xia, R., Choi, S.M., Randall, C.A., and Shrout, T.R.: Investigation of bismuth-based perovskite system: (1-x)Bi(Ni2/3Nb1/3)O3-xPbTiO3 . J. Appl. Phys. 98, 034103 (2005).
31. Grinberg, I., Suchomel, M.R., Davies, P.K., and Andrew, M.R.: Predicting morphotropic phase boundary locations and transition temperatures in Pb- and Bi-based perovskite solid solutions from crystal chemical data and first-principles calculations. J. Appl. Phys. 98, 094111 (2005).
32. Chen, Z.W. and Hu, J.H.: Piezoelectric and dielectric properties of (Bi0.5Na0.5)0.94Ba0.06TiO3-Ba(Zr0.04Ti0.96)O3 lead-free piezoelectric ceramics. Ceram. Int. 35, 111115 (2009).
33. Liou, Y.C. and Chen, J.H.: PMN ceramics produced by a simplified columbite route. Ceram. Int. 30, 1722 (2004).
34. Prakash, C., Kumar, P., Thakur, O.P., Chatterjee, R., and Goel, T.C.: Dielectric, ferroelectric and pyroelectric properties of PMNT ceramics. Phys. B 371, 313316 (2006).
35. Zuo, R.Z., Rodel, J., Chen, R.Z., and Li, L.T.: Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J. Am. Ceram. Soc. 89, 20102015 (2006).
36. Kim, H.K., Lee, S.H., Lee, S.G., Lee, K.T., and Lee, Y.H.: Effect of various sintering aids on the piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3-0.02Li0.04(Sb0.06Ta0.1)O3 ceramics. Mater. Res. Bull. 58, 218222 (2014).
37. Swartz, S.L. and Shrout, T.R.: Fabrication of perovskite lead magnesium niobate. Mater. Res. Bull. 17, 12451250 (1982).
38. Lv, Y.Q., Hu, M., Wu, Y.G., and Yan, H.Y.: Research on preparation and piezoelectric properties of PZT-PMN piezoelectric ceramics. Piezoelectr. Acoustoopt. 29, 1004 (2007).
39. Yao, G.F., Wang, X.H., Yang, Y., and Li, L.T.: Effects of Bi2O3 and Yb2O3 on the curie temperature in BaTiO3-based ceramics. J. Am. Ceram. Soc. 93, 16971701 (2010).
40. Hou, Y.D., Zhu, M.K., Gao, F., Wang, H., Tian, C.S., and Yan, H.: Effect of different lead atmosphere on the performance of 0.2 PZN-0.8 PZT piezoelectric ceramics. Piezoelectr. Acoustoopt. 27, 1004 (2005).
41. Mitoseriu, L., Ciomaga, C.E., Buscaglia, V., Stoleriu, L., Piazza, D., Galassi, C., Stancu, A., and Nanni, P.: Hysteresis and tunability characteristics of Ba(Zr,Ti)O3 ceramics described by first order reversal curves diagrams. J. Eur. Ceram. Soc. 27, 37233726 (2007).
42. Yao, Z.H., Peng, L.Y., Liu, H.X., Hao, H., Cao, M.H., and Yu, Z.Y.: Relationship between structure and properties in high-temperature Bi(Al0.5Fe0.5)O3-PbTiO3 piezoelectric ceramics. J. Alloys Compd. 509, 56375640 (2011).
43. Leist, T., Granzow, T., Jo, W., and Rödel, J.: Effect of tetragonal distortion on ferroelectric domain switching: A case study on La-doped BiFeO3-PbTiO3 ceramics. J. Appl. Phys. 108, 014103 (2010).
44. Fujii, I., Nakashima, K., Kumada, N., and Wada, S.: Structural, dielectric, and piezoelectric properties of BaTiO3-Bi(Ni1/2Ti1/2)O3 ceramic. J. Ceram. Soc. Jpn. 120, 3034 (2012).
45. Zhen, Y.H. and Li, J.F.: Normal sintering of (K,Na)NbO3-based ceramics: Influence of sintering temperature on densification, microstructure, and electrical properties. J. Am. Ceram. Soc. 89, 36693674 (2006).
46. Hong, J.K., Lee, J.S., Lim, K.J., Lee, Y.H., and Chae, H.I.: Poling effect of dielectric and piezoelectric properties in PMWN-PZT ceramics. Ferroelectrics 272, 22532258 (2002).
47. Radecka, M. and Rekas, M.: Charge and mass transport in ceramic TiO2 . J. Eur. Ceram. Soc. 22, 20012012 (2002).
48. Shi, L., Liao, Q.W., Zhang, B.P., Zhang, J.Y. and Guo, D.: Structure and electrical properties of (1-x)(0.1BiYbO3-0.9PbTiO3)-xPb(Zn1/3Nb2/3)O3 high-temperature ternary piezoelectric ceramics. Mater. Lett. 144, 100102 (2014).
49. Li, Z.A., Yang, H.X., Tian, H.F., Li, J.Q., Cheng, J.R., and Chen, J.G.: Transmission electron microscopy study of multiferroic (Bi1-x La x )FeO3-PbTiO3 with x = 0.1, 0.2, and 0.3. Appl. Phys. Lett. 90, 182904 (2007).
50. Okazaki, K. and Maiwa, H.: Space charge effects on ferroelectric ceramic particle surfaces. Jpn. J. Appl. Phys. 31, 31133116 (1992).
51. Long, J.W., Chen, H.G., and Meng, Z.Y.: Effect of doping on microstructure and electric properties of PMS-PZ-PT ternary material. J. Inorg. Mater. 19, 101106 (2004).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 3
Total number of PDF views: 31 *
Loading metrics...

Abstract views

Total abstract views: 264 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th July 2018. This data will be updated every 24 hours.