Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T03:32:08.364Z Has data issue: false hasContentIssue false

Effects of sintering temperature on structure and properties of BY-PT-PMN ternary piezoelectric ceramics

Published online by Cambridge University Press:  31 March 2015

Liu Hai
Affiliation:
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Zhang Bo-Ping*
Affiliation:
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Pei Yu
Affiliation:
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Zhao Lei
Affiliation:
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Wang Kai-sheng
Affiliation:
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Liu Yan-tao
Affiliation:
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
*
a)Address all correspondence to this author. e-mail: bpzhang@ustb.edu.cn
Get access

Abstract

0.7(0.1BiYbO3-0.9PbTiO3)-0.3 Pb(Mg1/3Nb2/3)O3 (0.7BYPT-0.3PMN) ternary piezoelectric ceramics were prepared by a columbite precursor method. The effects of sintering temperature on the crystalline phase, microstructure, and electrical properties of the ceramics were systematically investigated. There were two phases coexisting in the 0.7BYPT-0.3PMN ceramics sintered at 1100–1250 °C, one is the perovskite host phase with tetragonal symmetry and the other is Yb2Ti2O7 impurity phase. It was observed that, with increasing sintering temperature, the piezoelectric constant d33, dielectric constant εr, planar electromechanical coupling coefficient kp, and Curie temperature TC increased initially and then decreased. An apparent structure distortion could also be observed in samples synthesized at high sintering temperature due to the severe volatilization of Pb and Bi. The optimum performances of the material were obtained for samples sintered at 1150 °C with d33 = 100 pC/N, εr = 494, kp = 25.4%, and TC = 380 °C, respectively. It can be ascribed to the combined effect of a higher density, structural homogeneity with decreased tetragonality as well as a small amount of pyrochlore phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jaffe, B., Cook, W.R., and Jaffe, H.: Piezoelectric Ceramics (Academic Press, London, England, 1971); pp. 135144.Google Scholar
Chua, B.W., Lu, L., Lai, M.O., and Wong, G.H.L.: Effects of complex additives on toughness and electrical properties of PZT ceramics. J. Alloys Compd. 381, 272277 (2004).Google Scholar
Randall, C.A., Kelnberger, A., Yang, G.Y., Eitel, R.E., and Shrout, T.R.: High strain piezoelectric multilayer actuators—A material science and engineering challenge. J. Electroceram. 14, 177191 (2005).Google Scholar
Vittayakorn, N., Rujijanagul, G., and Cann, D.P.: Investigation of the influence of thermal treatment on the morphologies, dielectric and ferroelectric properties of PZT-based ceramics. J. Alloys Compd. 440, 259264 (2007).Google Scholar
Shim, D., Pak, J., Nam, K., and Park, G.: Enhanced fatigue characteristics of sol-gel derived PZT thin films. J. Alloys Compd. 449, 3235 (2008).Google Scholar
Wang, J.N., Wang, L.D., Li, W.L., and Fei, W.D.: Dependence of lattice distortion of monoclinic phase on film thickness in Pb(Zr0.58Ti0.42)O3 thin films. J. Alloys Compd. 509, 33473352 (2011).Google Scholar
Damjanovic, D.: Materials for high temperature piezoelectric transducers. Curr. Opin. Solid State Mater. Sci. 3, 469 (1998).Google Scholar
Eitel, R.E., Randall, C.A., Shrout, T.R., Rehrig, P.W., Hackenberger, W., and Park, S.E.: New high temperature morphotropic phase boundary piezoelectrics based on Bi(Me)O3-PbTiO3 ceramics. Jpn. J. Appl. Phys. 40, 59996002 (2001).Google Scholar
Eitel, R.E., Randall, C.A., Shrout, T.R., and Park, S.E.: Preparation and characterization of high temperature perovskite ferroelectrics in the solid-solution (1-x)BiScO3-xPbTiO3 . Jpn. J. Appl. Phys. 41, 20992104 (2002).Google Scholar
Randall, C.A., Eitel, R.E., Shrout, T.R., Woodward, D.I., and Reaney, I.M.: Transmission electron microscopy investigation of the high temperature BiScO3-PbTiO3 piezoelectric ceramic system. J. Appl. Phys. 93, 92719274 (2003).Google Scholar
Duan, R.R., Speyer, R.F., Alberta, E., and Shrout, T.R.: High curie temperature perovskite BiInO3-PbTiO3 ceramics. J. Mater. Res. 19, 21852193 (2004).Google Scholar
Zhang, S.J., Eitel, R.E., Randall, C.A., Shrout, T.R., and Alberta, E.F.: Manganese-modified BiScO3-PbTiO3 piezoelectric ceramic for high-temperature shear mode sensor. Appl. Phys. Lett. 86, 262904 (2005).Google Scholar
Choi, S.M., Stringer, C.J., Shrout, T.R., and Randall, C.A.: Structure and property investigation of a Bi-based perovskite solid solution: (1-x)Bi(Ni1/2Ti1/2)O3-xPbTiO3 . J. Appl. Phys. 98, 034108 (2005).Google Scholar
Stringer, C.J., Shrout, T.R., Randall, C.A., and Reaney, I.M.: Classification of transition temperature behavior in ferroelectric PbTiO3-Bi(Me'Me')O3 solid solutions. J. Appl. Phys. 99, 024106 (2006).Google Scholar
Qureshi, A.H., Shabbir, G., and Hall, D.A.: On the synthesis and dielectric studies of (1-x)Bi(Mg1/2Zr1/2)O3-xPbTiO3 piezoelectric ceramic system. Mater. Lett. 61, 44824484 (2007).Google Scholar
Yao, Z.H., Liu, H.X., Liu, Y., Wu, Z.H., Cao, M.H., and Hao, H.: High-temperature relaxor cobalt-doped (1-x)BiScO3-xPbTiO3 piezoelectric ceramics. Appl. Phys. Lett. 92, 142905 (2008).Google Scholar
Rai, R., Sinha, A., Sharmac, S., and Sinha, N.K.P.: Investigation of structural and electrical properties of (1-x)Bi0.5Mg0.5TiO3-(x)PbTiO3 ceramic system. J. Alloys Compd. 486, 273277 (2009).Google Scholar
Yamazaki, H., Shimura, T., Sakamoto, W., and Yogo, T.: Synthesis and properties of BiScO3-PbTiO3 powders and thin films using metal-organic precursor solutions. J. Ceram. Soc. Jpn. 118, 631635 (2010).Google Scholar
Yao, Z.H., Liu, H.X., Hao, H., and Cao, M.H.: Structure, electrical properties, and depoling mechanism of BiScO3-PbTiO3-Pb(Zn1/3Nb2/3)O3 high-temperature piezoelectric ceramics. J. Appl. Phys. 109, 014105 (2011).Google Scholar
Zhang, S.J., Xia, R., Lebrun, L., Anderson, D., and Shrout, T.R.: Piezoelectric materials for high power, high temperature applications. Mater. Lett. 59, 34713475 (2005).CrossRefGoogle Scholar
Ansell, T.Y. and Cann, D.P.: High temperature piezoelectric ceramics based on (1-x)[BiScO3+Bi(Ni1/2Ti1/2)O3]-xPbTiO3 . Mater. Lett. 80, 8790 (2012).Google Scholar
Sterianou, I., Reaney, I.M., Sinclair, D.C., Bell, A.J., and Hall, D.A.: High-temperature (1-x)BiSc1/2Fe1/2O3-xPbTiO3 piezoelectric ceramics. Appl. Phys. Lett. 87, 242901 (2005).Google Scholar
Sterianou, I., Sinclair, D.C., Reaney, I.M., Comyn, T.P., and Bell, A.J.: Investigation of high Curie temperature (1-x)BiSc1-yFeyO3-xPbTiO3 piezoelectric ceramics. J. Appl. Phys. 106, 084107 (2009).Google Scholar
Sebastian, T., Sterianou, I., Sinclair, D.C., Bell, A.J., Hall, D.A., and Reaney, I.M.: High temperature piezoelectric ceramics in the Bi(Mg1/2Ti1/2)O3-BiFeO3-BiScO3-PbTiO3 system. J. Electroceram. 25(2–4), 130134 (2010).Google Scholar
Rai, R., Kholkin, A., Pandey, S., and Singh, N.K.: Investigation of structural, electrical and magnetic properties of BiFeO3-Bi(MgTi)O3-PbTiO3 ceramic system. J. Alloys Compd. 488, 459464 (2009).Google Scholar
Woodward, D.I., Reaney, I.M., Eitel, R., and Randall, C.A.: Crystal and domain structure of the BiFeO3-PbTiO3 solid solution. J. Appl. Phys. 94, 33133318 (2003).Google Scholar
Chen, J., Wang, X., Jo, W., and Rodel, J.: Microstructure and electrical properties of (1-x)Bi(Li1/3Zr2/3)O3-xPbTiO3 piezoelectric ceramics. J. Am. Ceram. Soc. 93, 16921696 (2010).Google Scholar
Randall, C.A., Eitel, R., Jones, B., and Shrout, T.R.: Investigation of a high T c piezoelectric system: (1-x)Bi(Mg1/2Ti1/2)O3-(x)PbTiO3 . J. Appl. Phys. 95, 36333639 (2004).Google Scholar
Suchomel, M.R. and Davies, P.K.: Enhanced tetragonality in (x)PbTiO3-(1-x)Bi(Zn1/2Ti1/2)O3 and related solid solution systems. Appl. Phys. Lett. 86, 262905 (2005).Google Scholar
Zhang, S.J., Stringer, C., Xia, R., Choi, S.M., Randall, C.A., and Shrout, T.R.: Investigation of bismuth-based perovskite system: (1-x)Bi(Ni2/3Nb1/3)O3-xPbTiO3 . J. Appl. Phys. 98, 034103 (2005).Google Scholar
Grinberg, I., Suchomel, M.R., Davies, P.K., and Andrew, M.R.: Predicting morphotropic phase boundary locations and transition temperatures in Pb- and Bi-based perovskite solid solutions from crystal chemical data and first-principles calculations. J. Appl. Phys. 98, 094111 (2005).Google Scholar
Chen, Z.W. and Hu, J.H.: Piezoelectric and dielectric properties of (Bi0.5Na0.5)0.94Ba0.06TiO3-Ba(Zr0.04Ti0.96)O3 lead-free piezoelectric ceramics. Ceram. Int. 35, 111115 (2009).Google Scholar
Liou, Y.C. and Chen, J.H.: PMN ceramics produced by a simplified columbite route. Ceram. Int. 30, 1722 (2004).Google Scholar
Prakash, C., Kumar, P., Thakur, O.P., Chatterjee, R., and Goel, T.C.: Dielectric, ferroelectric and pyroelectric properties of PMNT ceramics. Phys. B 371, 313316 (2006).Google Scholar
Zuo, R.Z., Rodel, J., Chen, R.Z., and Li, L.T.: Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J. Am. Ceram. Soc. 89, 20102015 (2006).Google Scholar
Kim, H.K., Lee, S.H., Lee, S.G., Lee, K.T., and Lee, Y.H.: Effect of various sintering aids on the piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3-0.02Li0.04(Sb0.06Ta0.1)O3 ceramics. Mater. Res. Bull. 58, 218222 (2014).Google Scholar
Swartz, S.L. and Shrout, T.R.: Fabrication of perovskite lead magnesium niobate. Mater. Res. Bull. 17, 12451250 (1982).Google Scholar
Lv, Y.Q., Hu, M., Wu, Y.G., and Yan, H.Y.: Research on preparation and piezoelectric properties of PZT-PMN piezoelectric ceramics. Piezoelectr. Acoustoopt. 29, 1004 (2007).Google Scholar
Yao, G.F., Wang, X.H., Yang, Y., and Li, L.T.: Effects of Bi2O3 and Yb2O3 on the curie temperature in BaTiO3-based ceramics. J. Am. Ceram. Soc. 93, 16971701 (2010).Google Scholar
Hou, Y.D., Zhu, M.K., Gao, F., Wang, H., Tian, C.S., and Yan, H.: Effect of different lead atmosphere on the performance of 0.2 PZN-0.8 PZT piezoelectric ceramics. Piezoelectr. Acoustoopt. 27, 1004 (2005).Google Scholar
Mitoseriu, L., Ciomaga, C.E., Buscaglia, V., Stoleriu, L., Piazza, D., Galassi, C., Stancu, A., and Nanni, P.: Hysteresis and tunability characteristics of Ba(Zr,Ti)O3 ceramics described by first order reversal curves diagrams. J. Eur. Ceram. Soc. 27, 37233726 (2007).Google Scholar
Yao, Z.H., Peng, L.Y., Liu, H.X., Hao, H., Cao, M.H., and Yu, Z.Y.: Relationship between structure and properties in high-temperature Bi(Al0.5Fe0.5)O3-PbTiO3 piezoelectric ceramics. J. Alloys Compd. 509, 56375640 (2011).Google Scholar
Leist, T., Granzow, T., Jo, W., and Rödel, J.: Effect of tetragonal distortion on ferroelectric domain switching: A case study on La-doped BiFeO3-PbTiO3 ceramics. J. Appl. Phys. 108, 014103 (2010).Google Scholar
Fujii, I., Nakashima, K., Kumada, N., and Wada, S.: Structural, dielectric, and piezoelectric properties of BaTiO3-Bi(Ni1/2Ti1/2)O3 ceramic. J. Ceram. Soc. Jpn. 120, 3034 (2012).Google Scholar
Zhen, Y.H. and Li, J.F.: Normal sintering of (K,Na)NbO3-based ceramics: Influence of sintering temperature on densification, microstructure, and electrical properties. J. Am. Ceram. Soc. 89, 36693674 (2006).Google Scholar
Hong, J.K., Lee, J.S., Lim, K.J., Lee, Y.H., and Chae, H.I.: Poling effect of dielectric and piezoelectric properties in PMWN-PZT ceramics. Ferroelectrics 272, 22532258 (2002).Google Scholar
Radecka, M. and Rekas, M.: Charge and mass transport in ceramic TiO2 . J. Eur. Ceram. Soc. 22, 20012012 (2002).Google Scholar
Shi, L., Liao, Q.W., Zhang, B.P., Zhang, J.Y. and Guo, D.: Structure and electrical properties of (1-x)(0.1BiYbO3-0.9PbTiO3)-xPb(Zn1/3Nb2/3)O3 high-temperature ternary piezoelectric ceramics. Mater. Lett. 144, 100102 (2014).Google Scholar
Li, Z.A., Yang, H.X., Tian, H.F., Li, J.Q., Cheng, J.R., and Chen, J.G.: Transmission electron microscopy study of multiferroic (Bi1-x La x )FeO3-PbTiO3 with x = 0.1, 0.2, and 0.3. Appl. Phys. Lett. 90, 182904 (2007).Google Scholar
Okazaki, K. and Maiwa, H.: Space charge effects on ferroelectric ceramic particle surfaces. Jpn. J. Appl. Phys. 31, 31133116 (1992).Google Scholar
Long, J.W., Chen, H.G., and Meng, Z.Y.: Effect of doping on microstructure and electric properties of PMS-PZ-PT ternary material. J. Inorg. Mater. 19, 101106 (2004).Google Scholar