Skip to main content

Effects of tunneling-based access resistance in layered single-crystalline organic transistors

  • Takamasa Hamai (a1), Shunto Arai (a1) and Tatsuo Hasegawa (a2)

7-Decyl-2-phenyl[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-C10) is a soluble organic semiconductor that can afford high mobility organic thin-film transistors (OTFTs). The material exhibits inherent high layered crystallinity due to the formation of bilayer-type layered-herringbone packing that involves nearly independent π-electron core layers and alkyl-chain layers within the crystals. Here, we discuss that the bottom-gate/top-contact OTFTs composed of single-crystalline Ph-BTBT-C10 channel layers exhibit noticeable effects in the device characteristics caused by the highly insulating nature of the alkyl-chain layers. Notable layer-number (n) dependence was observed in the nonlinear current–voltage characteristics and the device mobility (2–14 cm2/Vs, with TFT ideality factor 15–46%, mainly due to large threshold voltages), which can be clearly ascribed to the tunneling-based interlayer access resistance across the alkyl-chain layers. The gated-four-probe measurements of single-crystalline OTFTs also revealed quite high mobility more than 40 cm2/Vs along the channel semiconducting layer, whereas highly insulating effects due to the alkyl-chain layers were also apparent as the large hysteresis in the gate-off states of OTFTs. We discuss the whole features of the tunneling-based access resistance in the device operations of single-crystalline OTFTs, on the basis of comparison between experimental results and model simulations.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Sirringhaus, H.: 25th anniversary article: Organic field-effect transistors: The path beyond amorphous silicon. Adv. Mater. 26, 1319 (2014).
2.Mei, J., Diao, Y., Appleton, A.L., Fang, L., and Bao, Z.: Integrated materials design of organic semiconductors for field-effect transistors. J. Am. Chem. Soc. 135, 6724 (2013).
3.Kang, B., Lee, W.H., and Cho, K.: Recent advances in organic transistor printing processes. ACS Appl. Mater. Interfaces 5, 2302 (2013).
4.Ebata, H., Izawa, T., Miyazaki, E., Takimiya, K., Ikeda, M., Kuwabara, H., and Yui, T.: Highly soluble [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. J. Am. Chem. Soc. 129, 15732 (2007).
5.Mitsui, C., Okamoto, T., Yamagishi, M., Tsurumi, J., Yoshimoto, K., Nakahara, K., Soeda, J., Hirose, Y., Sato, H., Yamano, A., Uemura, T., and Takeya, J.: High-performance solution-processable N-shaped organic semiconducting materials with stabilized crystal phase. Adv. Mater. 26, 4546 (2014).
6.Inoue, S., Minemawari, H., Tsutsumi, J., Chikamatsu, M., Yamada, T., Horiuchi, S., Tanaka, M., Kumai, R., Yoneya, M., and Hasegawa, T.: Effects of substituted alkyl chain length on solution-processable layered organic semiconductor crystals. Chem. Mater. 27, 3809 (2015).
7.Minemawari, H., Tanaka, M., Tsuzuki, S., Inoue, S., Yamada, T., Kumai, R., Shimoi, Y., and Hasegawa, T.: Enhanced layered-herringbone packing due to long alkyl chain substitution in solution-processable organic semiconductors. Chem. Mater. 29, 1245 (2017).
8.Tsutsumi, J., Matsuoka, S., Inoue, S., Minemawari, H., Yamada, T., and Hasegawa, T.: N-type field-effect transistors based on layered crystalline donor–acceptor semiconductors with dialkylated benzothienobenzothiophenes as electron donors. J. Mater. Chem. C 3, 1976 (2015).
9.Shibata, Y., Tsutsumi, J., Matsuoka, S., Minemawari, H., Arai, S., Kumai, R., and Hasegawa, T.: Unidirectionally crystallized stable n-type organic thin-film transistors based on solution-processable donor-acceptor compounds. Adv. Electron. Mater. 3, 1700097 (2017).
10.McCulloch, I., Heeney, M., Bailey, C., Genevicius, K., Macdonald, I., Shkunov, M., Sparrowe, D., Tierney, S., Wagner, R., Zhang, W., Chabinyc, M.L., Kline, R.J., McGehee, M.D., and Toney, M.F.: Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328 (2006).
11.Minemawari, H., Tsutsumi, J., Inoue, S., Yamada, T., Kumai, R., and Hasegawa, T.: Crystal structure of asymmetric organic semiconductor 7-decyl-2-phenyl[1]benzothieno[3,2-b][1]benzothiophene. Appl. Phys. Express 7, 91601 (2014).
12.Minemawari, H., Yamada, T., Matsui, H., Tsutsumi, J., Haas, S., Chiba, R., Kumai, R., and Hasegawa, T.: Inkjet printing of single-crystal films. Nature 475, 364 (2011).
13.Uemura, T., Nakayama, K., Hirose, Y., Soeda, J., Uno, M., Li, W., Yamagishi, M., Okada, Y., and Takeya, J.: Band-like transport in solution-crystallized organic transistors. Curr. Appl. Phys. 12, S87 (2012).
14.Soeda, J., Uemura, T., Okamoto, T., Mitsui, C., Yamagishi, M., and Takeya, J.: Inch-size solution-processed single-crystalline films of high-mobility organic semiconductors. Appl. Phys. Express 6, 76503 (2013).
15.Iino, H., Usui, T., and Hanna, J.: Liquid crystals for organic thin-film transistors. Nat. Commun. 6, 6828 (2015).
16.Soeda, J., Okamoto, T., Mitsui, C., and Takeya, J.: Stable growth of large-area single crystalline thin films from an organic semiconductor/polymer blend solution for high-mobility organic field-effect transistors. Org. Electron. 39, 127 (2016).
17.Peng, B., Huang, S., Zhou, Z., and Chan, P.K.L.: Solution-processed monolayer organic crystals for high-performance field-effect transistors and ultrasensitive gas sensors. Adv. Funct. Mater. 27, 1700999 (2017).
18.Diao, Y., Tee, B.C-K., Giri, G., Xu, J., Kim, D.H., Becerril, H.A., Stoltenberg, R.M., Lee, T.H., Xue, G., Mannsfeld, S.C.B., and Bao, Z.: Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat. Mater. 12, 665 (2013).
19.Janneck, R., Vercesi, F., Heremans, P., Genoe, J., and Rolin, C.: Predictive model for the meniscus-guided coating of high-quality organic single-crystalline thin films. Adv. Mater. 28, 8007 (2016).
20.Hamai, T., Arai, S., Minemawari, H., Inoue, S., Kumai, R., and Hasegawa, T.: Tunneling and origin of large access resistance in layered-crystal organic transistors. Appl. Phys. Rev. 8, 54011 (2017).
21.Dürr, A.C., Schreiber, F., Kelsch, M., Carstanjen, H.D., Dosch, H., and Seeck, O.H.: Morphology and interdiffusion behavior of evaporated metal films on crystalline diindenoperylene thin films. J. Appl. Phys. 93, 5201 (2003).
22.Xu, Y., Liu, C., Sun, H., Balestra, F., Ghibaudo, G., Scheideler, W., and Noh, Y.Y.: Metal evaporation dependent charge injection in organic transistors. Org. Electron. 15, 1738 (2014).
23.Podzorov, V., Sysoev, S.E., Loginova, E., Pudalov, V.M., and Gershenson, M.E.: Single-crystal organic field effect transistors with the hole mobility ∼8 cm2/V s. Appl. Phys. Lett. 83, 3504 (2003).
24.Gundlach, D.J., Zhou, L., Nichols, J.A., Jackson, T.N., Necliudov, P.V., and Shur, M.S.: An experimental study of contact effects in organic thin film transistors. J. Appl. Phys. 100, 24509 (2006).
25.Minari, T., Miyadera, T., Tsukagoshi, K., Aoyagi, Y., and Ito, H.: Charge injection process in organic field-effect transistors. Appl. Phys. Lett. 91, 053508 (2007).
26.Wang, S.D., Minari, T., Miyadera, T., Tsukagoshi, K., and Aoyagi, Y.: Contact-metal dependent current injection in pentacene thin-film transistors. Appl. Phys. Lett. 91, 203508 (2007).
27.Minari, T., Darmawan, P., Liu, C., Li, Y., Xu, Y., and Tsukagoshi, K.: Highly enhanced charge injection in thienoacene-based organic field-effect transistors with chemically doped contact. Appl. Phys. Lett. 100, 093303 (2012).
28.Choi, H.H., Cho, K., Frisbie, C.D., Sirringhaus, H., and Podzorov, V.: Critical assessment of charge mobility extraction in FETs. Nat. Mater. 17, 2 (2018).
29.Torricelli, F., Ghittorelli, M., Colalongo, L., and Kovacs-Vajna, Z.M.: Single-transistor method for the extraction of the contact and channel resistances in organic field-effect transistors. Appl. Phys. Lett. 104, 93303 (2014).
30.Yamagishi, Y., Noda, K., Kobayashi, K., and Yamada, H.: Interlayer resistance and edge-specific charging in layered molecular crystals revealed by Kelvin-probe force microscopy. J. Phys. Chem. C 119, 3006 (2015).
31.Takagi, S., Koga, J., and Toriumi, A.: Subband structure engineering for performance enhancement of Si MOSFETs. Int. Electron Devices Meet. IEDM Tech. Dig. 410, 219 (1997).
32.Podzorov, V., Pudalov, V.M., and Gershenson, M.E.: Field-effect transistors on rubrene single crystals with parylene gate insulator. Appl. Phys. Lett. 82, 1739 (2003).
33.Pesavento, P.V., Chesterfield, R.J., Newman, C.R., and Frisble, C.D.: Gated four-probe measurements on pentacene thin-film transistors: Contact resistance as a function of gate voltage and temperature. J. Appl. Phys. 96, 7312 (2004).
34.Pesavento, P.V., Puntambekar, K.P., Frisbie, C.D., McKeen, J.C., and Ruden, P.P.: Film and contact resistance in pentacene thin-film transistors: Dependence on film thickness, electrode geometry, and correlation with hole mobility. J. Appl. Phys. 99, 94504 (2006).
35.Takeya, J., Yamagishi, M., Tominari, Y., Hirahara, R., Nakazawa, Y., Nishikawa, T., Kawase, T., Shimoda, T., and Ogawa, S.: Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Appl. Phys. Lett. 90, 102120 (2007).
36.Uemura, T., Rolin, C., Ke, T-H., Fesenko, P., Genoe, J., Heremans, P., and Takeya, J.: On the extraction of charge carrier mobility in high-mobility organic transistors. Adv. Mater. 28, 151 (2016).
37.Yi, H.T., Chen, Y., Czelen, K., and Podzorov, V.: Vacuum lamination approach to fabrication of high-performance single-crystal organic field-effect transistors. Adv. Mater. 23, 5807 (2011).
38.Bittle, E.G., Basham, J.I., Jackson, T.N., and Jurchescu, O.D.: Mobility overestimation due to gated contacts in organic field-effect transistors. Nat. Commun. 7, 10908 (2016).
39.Moscatello, J.P., Castaneda, C.V., Zaidi, A., Cao, M., Usluer, O., Briseno, A.L., and Aidala, K.E.: Time-resolved kelvin probe force microscopy to study population and depopulation of traps in electron or hole majority organic semiconductors. Org. Electron. 41, 26 (2017).
40.Simmons, J.G.: Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793 (1963).
41.Wang, W., Lee, T., and Reed, M.A.: Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys. Rev. B 68, 35416 (2003).
42.Lee, T., Wang, W., Klemic, J.F., Zhang, J.J., Su, J., and Reed, M.A.: Comparison of electronic transport characterization methods for alkanethiol self-assembled monolayers. J. Phys. Chem. B 108, 8742 (2004).
43.Salomon, A., Boecking, T., Chan, C.K., Amy, F., Girshevitz, O., Cahen, D., and Kahn, A.: How do electronic carriers cross Si-bound alkyl monolayers? Phys. Rev. Lett. 95, 266807 (2005).
44.Salomon, A., Shpaisman, H., Seitz, O., Boecking, T., and Cahen, D.: Temperature-dependent electronic transport through alkyl chain monolayers: Evidence for a molecular signature. J. Phys. Chem. C 112, 3969 (2008).
45.Richards, T.J. and Sirringhaus, H.: Analysis of the contact resistance in staggered, top-gate organic field-effect transistors. J. Appl. Phys. 102, 94510 (2007).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed