Skip to main content
×
×
Home

Effects of Zn content on microstructures and mechanical properties of as-cast Mg–4Y–xZn alloys

  • Ruyou Fan (a1), Zili Liu (a1), Xiqin Liu (a1), Yang Liu (a1), Han Yin (a1) and Jian Li (a2)...
Abstract
Abstract

Effects of Zn content on microstructures and mechanical properties of as-cast Mg–4Y–xZn alloys (x = 1, 2, 3, 4) have been studied in the article. The results indicate that the X phase is formed firstly, and the X phase, X + W phases, and W phase precipitated in order when the Zn contents increased from 1 to 4 wt%. The secondary dendritic arm spacing of the tested alloys first decrease as the Zn content increases within the range of 1–2% and then it increases. The ultimate tensile strength (UTS) and elongation of the four experimental alloys increase until the addition of Zn reaches to 3%, with the maximum values of 213.6 MPa and 11.82%, respectively. Besides, the fracture behaviors of Mg–4Y–1Zn, Mg–4Y–2Zn, and Mg–4Y–3Zn were a quasi-cleavage fracture, while Mg–4Y–4Zn belonged to cleavage.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: liuzili@nuaa.edu.cn
Footnotes
Hide All

Contributing Editor: Jürgen Eckert

Footnotes
References
Hide All
1. Liu Z.L., Liu Y., Liu X.Q., and Wang M.M.: Effect of minor Zn additions on the mechanical and corrosion properties of solution-treated AM60–2% RE magnesium alloy. J. Mater. Eng. Perform. 25(7), 2855 (2016).
2. Kim J., Ko W., Sandlöbes S., Heidelmann M., Grabowski B., and Raabe D.: The role of metastable LPSO building block clusters in phase transformations of an Mg–Y–Zn alloy. Acta Mater. 112, 171 (2016).
3. Zhang S., Liu W., Gu X., Lu C., Yuan G., and Ding W.: Effect of solid solution and aging treatments on the microstructures evolution and mechanical properties of Mg–14Gd–3Y–1.8Zn–0.5Zr alloy. J. Alloys Compd. 557, 91 (2013).
4. Itoi T., Inazawa T., Yamasaki M., Kawamura Y., and Hirohashi M.: Microstructure and mechanical properties of Mg–Zn–Y alloy sheet prepared by hot-rolling. Mater. Sci. Eng., A 560, 216 (2013).
5. Liu K., Sun C., Wang Z., Li S., Wang Q., and Du W.: Microstructure, texture and mechanical properties of Mg–Zn–Er alloys containing I-phase and W-phase simultaneously. J. Alloys Compd. 665, 76 (2016).
6. Hirsch J. and Al-Samman T.: Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 61(3), 818 (2013).
7. Mirza F.A. and Chen D.L.: Fatigue of rare-earth containing magnesium alloys: A review. Fatigue Fract. Eng. Mater. Struct. 37(8), 831 (2014).
8. Geng J., Teng X., Zhou G., Zhao D., and Leng J.: Growth mechanism of an icosahedral quasicrystal and solute partitioning in a Mg-rich Mg–Zn–Y alloy. J. Mater. Res. 29(08), 942 (2014).
9. Chen T.J., Zhang D.H., Wang W., Ma Y., and Hao Y.: Effects of Zn content on microstructures and mechanical properties of Mg–Zn–RE–Sn–Zr–Ca alloys. Mater. Sci. Eng., A 607, 17 (2014).
10. Zhu Y.M., Morton A.J., and Nie J.F.: Growth and transformation mechanisms of 18R and 14H in Mg–Y–Zn alloys. Acta Mater. 60(19), 6562 (2012).
11. Li M., Zhang K., Li X.G., Yuan J.W., Li Y.J., Ma M.L., Shi G.L., Li T., and Liu J.B.: Effect of Zn on the microstructure and mechanical properties of as-cast Mg–7Gd–3Y–1Nd–0.5Zr alloy. Mater. Sci. Eng., A 638, 46 (2015).
12. Leng Z., Zhang J., Zhu T., Wu R., Zhang M., Liu S., Sun J., and Zhang L.: Microstructure and mechanical properties of Mg–(6,9)RY–4Zn alloys by extrusion and aging. Mater. Des. 52, 713 (2013).
13. Xu C., Zheng M.Y., Xu S.W., Wu K., Wang E.D., Kamado S., Wang G.J., and Lv X.Y.: Ultra high-strength Mg–Gd–Y–Zn–Zr alloy sheets processed by large-strain hot rolling and ageing. Mater. Sci. Eng., A 547, 93 (2012).
14. Gröbner J., Kozlov A., Fang X.Y., Geng J., Nie J.F., and Schmid-Fetzer R.: Phase equilibria and transformations in ternary Mg-rich Mg–Y–Zn alloys. Acta Mater. 60(17), 5948 (2012).
15. Egusa D. and Abe E.: The structure of long period stacking/order Mg–Zn–RE phases with extended non-stoichiometry ranges. Acta Mater. 60(1), 166 (2012).
16. Tane M., Kimizuka H., Hagihara K., Suzuki S., Mayama T., Sekino T., and Nagai Y.: Effects of stacking sequence and short-range ordering of solute atoms on elastic properties of Mg–Zn–Y alloys with long-period stacking ordered structures. Acta Mater. 96, 170 (2015).
17. Zhu J., Chen J.B., Liu T., Liu J.X., Wang W.Y., Liu Z.K., and Hui X.D.: High strength Mg94Zn2.4Y3.6 alloy with long period stacking ordered structure prepared by near-rapid solidification technology. Mater. Sci. Eng., A 679, 476 (2017).
18. Wang J., Wu Z., Lu R., Chen Y., Huang S., Qin D., Yang W., and Pan F.: Mechanical properties and internal friction of Mg–Zn–Y alloys with a long-period stacking ordered structure at different Y/Zn atomic ratios. J. Mater. Res. 30(21), 3354 (2015).
19. Chen T.J., Wang W., Zhang D.H., Ma Y., and Hao Y.: Effects of heat treatment on microstructure and mechanical properties of ZW21 magnesium alloy. J. Alloys Compd. 546, 28 (2013).
20. Geng J., Teng X., Zhou G., and Zhao D.: Microstructure transformations in the heat-treated Mg–Zn–Y alloy. J. Mater. Res. 577, 498 (2013).
21. Yang K., Zhang J., Zong X., Wang W., Xu C., Cheng W., and Nie K.: Effect of microalloying with boron on the microstructure and mechanical properties of Mg–Zn–Y–Mn alloy. Mater. Sci. Eng., A 669, 340 (2016).
22. Asgharzadeh H., Yoon E.Y., Chae H.J., Kim T.S., Lee J.W., and Kim H.S.: Microstructure and mechanical properties of a Mg–Zn–Y alloy produced by a powder metallurgy route. J. Alloys Compd. 586, S95 (2014).
23. Wang J., Song P., Gao S., Huang X., Shi Z., and Pan F.: Effects of Zn on the microstructure, mechanical properties, and damping capacity of Mg–Zn–Y–Zr alloys. Mater. Sci. Eng., A 528(18), 5914 (2011).
24. Zhang Z., Liu X., Hu W., Li J., Le Q., Bao L., Zhu Z., and Cui J.: Microstructures, mechanical properties and corrosion behaviors of Mg–Y–Zn–Zr alloys with specific Y/Zn mole ratios. J. Alloys Compd. 624, 116 (2015).
25. Wang J., Song P., Gao S., Wei Y., and Pan F.: Influence of Y on the phase composition and mechanical properties of as-extruded Mg–Zn–Y–Zr magnesium alloys. J. Mater. Sci. 47(4), 2005 (2012).
26. Singh A., Somekawa H., and Mukai T.: High temperature processing of Mg–Zn–Y alloys containing quasicrystal phase for high strength. Mater. Sci. Eng., A 528(21), 6647 (2011).
27. Zhang Z., Liu X., Wang Z., Le Q., Hu W., Bao L., and Cui J.: Effects of phase composition and content on the microstructures and mechanical properties of high strength Mg–Y–Zn–Zr alloys. Mater. Des. 88, 915 (2015).
28. Wang J., Gao S., Song P., Huang X., Shi Z., and Pan F.: Effects of phase composition on the mechanical properties and damping capacities of as-extruded Mg–Zn–Y–Zr alloys. J. Alloys Compd. 509(34), 8567 (2011).
29. Zhu J., Chen X.H., Wang L., Wang W.Y., Liu Z.K., Liu J.X., and Hui X.D.: High strength Mg–Zn–Y alloys reinforced synergistically by Mg12ZnY phase and Mg3Zn3Y2 particle. J. Alloys Compd. 703, 508 (2017).
30. Chen T.J., Wang W., Zhang D.H., Ma Y., and Hao Y.: Development of a new magnesium alloy ZW21. Mater. Des. 44, 555 (2013).
31. Zhang L., Zhang J., Leng Z., Liu S., Yang Q., Wu R., and Zhang M.: Microstructure and mechanical properties of high-performance Mg–Y–Er–Zn extruded alloy. Mater. Des. 54, 256 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 30 *
Loading metrics...

Abstract views

Total abstract views: 113 *
Loading metrics...

* Views captured on Cambridge Core between 7th August 2017 - 18th December 2017. This data will be updated every 24 hours.