Skip to main content Accessibility help
×
Home

Elasticity of high-entropy alloys from ab initio theory

  • Shuo Huang (a1), Fuyang Tian (a2) and Levente Vitos (a3)

Abstract

High-entropy alloys (HEAs) consisting of multiprincipal elements have demonstrated many interesting structural, physical, and chemical properties for a wide range of applications. This article is a review of the current theoretical research on the elastic parameters of HEAs. The performance of various ab initio-based computational models (effective medium and supercell approaches) is carefully analyzed. Representative theoretical elastic parameters of different HEAs, including single-crystal elastic constants, polycrystalline elastic moduli, elastic anisotropy, and Debye temperature, are presented and discussed. For comparison, simple mixtures of the elastic moduli of pure elements are calculated and contrasted with the ab initio results. The present work provides a reference for future theoretical investigation of the micromechanical properties of systems based on HEAs.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: shuoh@kth.se

Footnotes

Hide All

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Footnotes

References

Hide All
1.Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).
2.Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).
3.Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).
4.Yeh, J.W.: Alloy design strategies and future trends in high-entropy alloys. JOM 65, 1759 (2013).
5.Tsai, M.H. and Yeh, J.W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107 (2014).
6.Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).
7.Ye, Y.F., Wang, Q., Lu, J., Liu, C.T., and Yang, Y.: High-entropy alloy: Challenges and prospects. Mater. Today 19, 349 (2016).
8.Pickering, E.J. and Jones, N.G.: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183 (2016).
9.Diao, H.Y., Feng, R., Dahmen, K.A., and Liaw, P.K.: Fundamental deformation behavior in high-entropy alloys: An overview. Curr. Opin. Solid State Mater. Sci. 21, 252 (2017).
10.Gao, C.M. and Alman, E.D.: Searching for next single-phase high-entropy alloy compositions. Entropy 15, 4504 (2013).
11.Gorsse, S., Miracle, D.B., and Senkov, O.N.: Mapping the world of complex concentrated alloys. Acta Mater. 135, 177 (2017).
12.Cantor, B.: Multicomponent and high entropy alloys. Entropy 16, 4749 (2014).
13.Gao, M.C., Gao, P., Hawk, J.A., Ouyang, L., Alman, D.E., and Widom, M.: Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity. J. Mater. Res. 32, 3627 (2017).
14.Tian, F.: A review of solid-solution models of high-entropy alloys based on ab initio calculations. Front. Mater. 4, 36 (2017).
15.Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y.: High-Entropy Alloys: Fundamentals and Applications (Springer, Switzerland, 2016).
16.Wu, Z., Bei, H., Otto, F., Pharr, G.M., and George, E.P.: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46, 131 (2014).
17.Otto, F., Yang, Y., Bei, H., and George, E.P.: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628 (2013).
18.Wu, Z., Bei, H., Pharr, G.M., and George, E.P.: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428 (2014).
19.Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., and Liaw, P.K.: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).
20.Senkov, O.N., Wilks, G.B., Scott, J.M., and Miracle, D.B.: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698 (2011).
21.Senkov, O.N., Scott, J.M., Senkova, S.V., Miracle, D.B., and Woodward, C.F.: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 509, 6043 (2011).
22.Yao, H.W., Qiao, J.W., Hawk, J.A., Zhou, H.F., Chen, M.W., and Gao, M.C.: Mechanical properties of refractory high-entropy alloys: Experiments and modeling. J. Alloys Compd. 696, 1139 (2017).
23.Yuan, Y., Wu, Y., Tong, X., Zhang, H., Wang, H., Liu, X.J., Ma, L., Suo, H.L., and Lu, Z.P.: Rare-earth high-entropy alloys with giant magnetocaloric effect. Acta Mater. 125, 481 (2017).
24.Zhao, Y.J., Qiao, J.W., Ma, S.G., Gao, M.C., Yang, H.J., Chen, M.W., and Zhang, Y.: A hexagonal close-packed high-entropy alloy: The effect of entropy. Mater. Des. 96, 10 (2016).
25.Feuerbacher, M., Heidelmann, M., and Thomas, C.: Hexagonal high-entropy alloys. Mater. Res. Lett. 3, 1 (2015).
26.Takeuchi, A., Amiya, K., Wada, T., Yubuta, K., and Zhang, W.: High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM 66, 1984 (2014).
27.Tong, C.J., Chen, Y.L., Yeh, J.W., Lin, S.J., Chen, S.K., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 881 (2005).
28.Kao, Y.F., Chen, T.J., Chen, S.K., and Yeh, J.W.: Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J. Alloys Compd. 488, 57 (2009).
29.Chou, H.P., Chang, Y.S., Chen, S.K., and Yeh, J.W.: Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. Mater. Sci. Eng., B 163, 184 (2009).
30.Wang, W.R., Wang, W.L., Wang, S.C., Tsai, Y.C., Lai, C.H., and Yeh, J.W.: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26, 44 (2012).
31.Tong, C.J., Chen, M.R., Yeh, J.W., Lin, S.J., Chen, S.K., Shun, T.T., and Chang, S.Y.: Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263 (2005).
32.Gali, A. and George, E.P.: Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74 (2013).
33.Tsai, M.H., Wang, C.W., Tsai, C.W., Shen, W.J., Yeh, J.W., Gan, J.Y., and Wu, W.W.: Thermal stability and performance of NbSiTaTiZr high-entropy alloy barrier for copper metallization. J. Electrochem. Soc. 158, H1161 (2011).
34.Chou, Y.L., Wang, Y.C., Yeh, J.W., and Shih, H.C.: Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions. Corros. Sci. 52, 3481 (2010).
35.Kao, Y.F., Lee, T.D., Chen, S.K., and Chang, Y.S.: Electrochemical passive properties of AlxCoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids. Corros. Sci. 52, 1026 (2010).
36.Chuang, M.H., Tsai, M.H., Wang, W.R., Lin, S.J., and Yeh, J.W.: Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59, 6308 (2011).
37.Hemphill, M.A., Yuan, T., Wang, G.Y., Yeh, J.W., Tsai, C.W., Chuang, A., and Liaw, P.K.: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723 (2012).
38.Koželj, P., Vrtnik, S., Jelen, A., Jazbec, S., Jagličić, Z., Maiti, S., Feuerbacher, M., Steurer, W., and Dolinšek, J.: Discovery of a superconducting high-entropy alloy. Phys. Rev. Lett. 113, 107001 (2014).
39.Deng, Y., Tasan, C.C., Pradeep, K.G., Springer, H., Kostka, A., and Raabe, D.: Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 94, 124 (2015).
40.He, J.Y., Wang, H., Huang, H.L., Xu, X.D., Chen, M.W., Wu, Y., Liu, X.J., Nieh, T.G., An, K., and Lu, Z.P.: A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187 (2016).
41.Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).
42.Senkov, O.N., Senkova, S.V., and Woodward, C.: Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214 (2014).
43.Hsu, C.Y., Wang, W.R., Tang, W.Y., Chen, S.K., and Yeh, J.W.: Microstructure and mechanical properties of new AlCoxCrFeMo0.5Ni high-entropy alloys. Adv. Eng. Mater. 12, 44 (2010).
44.Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).
45.Pugh, S.F.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823 (1954).
46.Kohn, W.: Nobel lecture: Electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys. 71, 1253 (1999).
47.Huang, S., Li, W., Lu, S., Tian, F., Shen, J., Holmström, E., and Vitos, L.: Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scr. Mater. 108, 44 (2015).
48.Huang, S., Li, W., Li, X., Schönecker, S., Bergqvist, L., Holmström, E., Varga, L.K., and Vitos, L.: Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys. Mater. Des. 103, 71 (2016).
49.Huang, S., Vida, Á., Molnár, D., Kádas, K., Varga, L.K., Holmström, E., and Vitos, L.: Phase stability and magnetic behavior of FeCrCoNiGe high-entropy alloy. Appl. Phys. Lett. 107, 251906 (2015).
50.Ma, D., Grabowski, B., Körmann, F., Neugebauer, J., and Raabe, D.: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90 (2015).
51.Niu, C., Zaddach, A.J., Koch, C.C., and Irving, D.L.: First principles exploration of near-equiatomic NiFeCrCo high entropy alloys. J. Alloys Compd. 672, 510 (2016).
52.Feng, R., Liaw, P.K., Gao, M.C., and Widom, M.: First-principles prediction of high-entropy-alloy stability. npj Comput. Mater. 3, 50 (2017).
53.Hohenberg, P. and Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).
54.Kohn, W. and Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).
55.Vitos, L.: Computational Quantum Mechanics for Materials Engineers (Springer, London, 2007).
56.Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
57.Perdew, J.P. and Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).
58.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
59.Soven, P.: Coherent-potential model of substitutional disordered alloys. Phys. Rev. 156, 809 (1967).
60.Győrffy, B.L.: Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys. Phys. Rev. B 5, 2382 (1972).
61.Vitos, L., Abrikosov, I.A., and Johansson, B.: Anisotropic lattice distortions in random alloys from first-principles theory. Phys. Rev. Lett. 87, 156401 (2001).
62.Nordheim, L.: Zur elektronentheorie der metalle. I. Ann. Phys. 401, 607 (1931).
63.Stripp, K.F. and Kirkwood, J.G.: Lattice vibrational spectrum of imperfect crystals. J. Chem. Phys. 22, 1579 (1954).
64.Wojtowicz, P.J. and Kirkwood, J.G.: Contribution of lattice vibrations to the order-disorder transformation in alloys. J. Chem. Phys. 33, 1299 (1960).
65.Bellaiche, L. and Vanderbilt, D.: Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites. Phys. Rev. B 61, 7877 (2000).
66.Zunger, A., Wei, S.H., Ferreira, L.G., and Bernard, J.E.: Special quasirandom structures. Phys. Rev. Lett. 65, 353 (1990).
67.Jiang, C. and Uberuaga, B.P.: Efficient ab initio modeling of random multicomponent alloys. Phys. Rev. Lett. 116, 105501 (2016).
68.Song, H., Tian, F., Hu, Q.M., Vitos, L., Wang, Y., Shen, J., and Chen, N.: Local lattice distortion in high-entropy alloys. Phys. Rev. Mater. 1, 023404 (2017).
69.Sanchez, J.M., Ducastelle, F., and Gratias, D.: Generalized cluster description of multicomponent systems. Phys. A 128, 334 (1984).
70.Connolly, J.W.D. and Williams, A.R.: Density-functional theory applied to phase transformations in transition-metal alloys. Phys. Rev. B 27, 5169 (1983).
71.Laks, D.B., Ferreira, L.G., Froyen, S., and Zunger, A.: Efficient cluster expansion for substitutional systems. Phys. Rev. B 46, 12587 (1992).
72.Wei, S.H., Ferreira, L.G., Bernard, J.E., and Zunger, A.: Electronic properties of random alloys: Special quasirandom structures. Phys. Rev. B 42, 9622 (1990).
73.van de Walle, A., Asta, M., and Ceder, G.: The alloy theoretic automated toolkit: A user guide. Calphad 26, 539 (2002).
74.van de Walle, A.: Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the alloy theoretic automated toolkit. Calphad 33, 266 (2009).
75.van de Walle, A., Tiwary, P., de Jong, M., Olmsted, D.L., Asta, M., Dick, A., Shin, D., Wang, Y., Chen, L.Q., and Liu, Z.K.: Efficient stochastic generation of special quasirandom structures. Calphad 42, 13 (2013).
76.Tian, L.Y., Wang, G.S., Harris, J.S., Irving, D.L., Zhao, J.J., and Vitos, L.: Alloying effect on the elastic properties of refractory high-entropy alloys. Mater. Des. 114, 243 (2017).
77.Győrffy, B.L., Pindor, A.J., Staunton, J., Stocks, G.M., and Winter, H.: A first-principles theory of ferromagnetic phase transitions in metals. J. Phys. F: Met. Phys. 15, 1337 (1985).
78.Staunton, J., Gyorffy, B.L., Pindor, A.J., Stocks, G.M., and Winter, H.: The “disordered local moment” picture of itinerant magnetism at finite temperatures. J. Magn. Magn. Mater. 45, 15 (1984).
79.Pinski, F.J., Staunton, J., Győrffy, B.L., Johnson, D.D., and Stocks, G.M.: Ferromagnetism versus antiferromagnetism in face-centered-cubic iron. Phys. Rev. Lett. 56, 2096 (1986).
80.Chen, S.Y., Yang, X., Dahmen, K.A., Liaw, P.K., and Zhang, Y.: Microstructures and crackling noise of AlxNbTiMoV high entropy alloys. Entropy. 16, 870 (2014).
81.Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K., and Payne, M.C.: First principles methods using CASTEP. Z. Kristallogr.–Cryst. Mater. 220, 567 (2005).
82.Tian, F., Wang, D., Shen, J., and Wang, Y.: An ab initio investgation of ideal tensile and shear strength of TiVNbMo high-entropy alloy. Mater. Lett. 166, 271 (2016).
83.Gschneidner, K.A.: Physical properties and interrelationships of metallic and semimetallic elements. Solid State Phys. 16, 275 (1964).
84.Tian, F.Y., Varga, L.K., Chen, N., Delczeg, L., and Vitos, L.: Ab initio investigation of high-entropy alloys of 3d elements. Phys. Rev. B 87, 075144 (2013).
85.Lucas, M.S., Wilks, G.B., Mauger, L., Muñoz, J.A., Senkov, O.N., Michel, E., Horwath, J., Semiatin, S.L., Stone, M.B., Abernathy, D.L., and Karapetrova, E.: Absence of long-range chemical ordering in equimolar FeCoCrNi. Appl. Phys. Lett. 100, 251907 (2012).
86.Kao, Y.F., Chen, S.K., Chen, T.J., Chu, P.C., Yeh, J.W., and Lin, S.J.: Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys. J. Alloys Compd. 509, 1607 (2011).
87.Lucas, M.S., Belyea, D., Bauer, C., Bryant, N., Michel, E., Turgut, Z., Leontsev, S.O., Horwath, J., Semiatin, S.L., McHenry, M.E., and Miller, C.W.: Thermomagnetic analysis of FeCoCrxNi alloys: Magnetic entropy of high-entropy alloys. J. Appl. Phys. 113, 17A923 (2013).
88.Huang, S., Holmström, E., Eriksson, O., and Vitos, L.: Mapping the magnetic transition temperatures for medium- and high-entropy alloys. Intermetallics 95, 80 (2018).
89.Niu, C., Zaddach, A.J., Oni, A.A., Sang, X., Hurt, J.W., LeBeau, J.M., Koch, C.C., and Irving, D.L.: Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo. Appl. Phys. Lett. 106, 161906 (2015).
90.Lucas, M.S., Mauger, L., Muñoz, J.A., Xiao, Y., Sheets, A.O., Semiatin, S.L., Horwath, J., and Turgut, Z.: Magnetic and vibrational properties of high-entropy alloys. J. Appl. Phys. 109, 07E307 (2011).
91.Wang, S.Q.: Atomic structure modeling of multi-principal-element alloys by the principle of maximum entropy. Entropy. 15, 5536 (2013).
92.Zheng, S.M., Feng, W.Q., and Wang, S.Q.: Elastic properties of high entropy alloys by MaxEnt approach. Comput. Mater. Sci. 142, 332 (2018).
93.Zhang, Y., Yang, X., and Liaw, P.K.: Alloy design and properties optimization of high-entropy alloys. JOM 64, 830 (2012).
94.Wu, Y.D., Cai, Y.H., Chen, X.H., Wang, T., Si, J.J., Wang, L., Wang, Y.D., and Hui, X.D.: Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys. Mater. Des. 83, 651 (2015).
95.VandeVondele, J., Krack, M., Mohamed, F., Parrinello, M., Chassaing, T., and Hutter, J.: Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103 (2005).
96.Widom, M., Huhn, W.P., Maiti, S., and Steurer, W.: Hybrid Monte Carlo/molecular dynamics simulation of a refractory metal high entropy alloy. Metall. Mater. Trans. A 45, 196 (2014).
97.Widom, M.: Entropy and diffuse scattering: Comparison of NbTiVZr and CrMoNbV. Metall. Mater. Trans. A 47, 3306 (2016).
98.Feng, B. and Widom, M.: Elastic stability and lattice distortion of refractory high entropy alloys. Mater. Chem. Phys. 210, 309 (2017).
99.Senkov, O.N., Senkova, S.V., Miracle, D.B., and Woodward, C.: Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Mater. Sci. Eng., A 565, 51 (2013).
100.Hebbache, M. and Zemzemi, M.: Ab initio study of high-pressure behavior of a low compressibility metal and a hard material: Osmium and diamond. Phys. Rev. B 70, 224107 (2004).
101.Gao, M.C., Suzuki, Y., Schweiger, H., Doğan, Ö.N., Hawk, J., and Widom, M.: Phase stability and elastic properties of Cr–V alloys. J. Phys.: Condens. Matter 25, 075402 (2013).
102.Tian, F.Y., Wang, Y., and Vitos, L.: Impact of aluminum doping on the thermo-physical properties of refractory medium-entropy alloys. J. Appl. Phys. 121, 015105 (2017).
103.Stepanov, N.D., Shaysultanov, D.G., Salishchev, G.A., and Tikhonovsky, M.A.: Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater. Lett. 142, 153 (2015).
104.Stepanov, N.D., Yurchenko, N.Y., Skibin, D.V., Tikhonovsky, M.A., and Salishchev, G.A.: Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. J. Alloys Compd. 652, 266 (2015).
105.Söderlind, P., Eriksson, O., Wills, J.M., and Boring, A.M.: Theory of elastic constants of cubic transition metals and alloys. Phys. Rev. B 48, 5844 (1993).
106.Huang, S., Vida, Á., Li, W., Molnár, D., Kwon, S.K., Holmström, E., Varga, B., Varga, L.K., and Vitos, L.: Thermal expansion in FeCrCoNiGa high-entropy alloy from theory and experiment. Appl. Phys. Lett. 110, 241902 (2017).
107.Vida, Á., Varga, L.K., Chinh, N.Q., Molnár, D., Huang, S., and Vitos, L.: Effects of the sp element additions on the microstructure and mechanical properties of NiCoFeCr based high entropy alloys. Mater. Sci. Eng., A 669, 14 (2016).
108.Tian, F.Y., Delczeg, L., Chen, N.X., Varga, L.K., Shen, J., and Vitos, L.: Structural stability of NiCoFeCrAlx high-entropy alloy from ab initio theory. Phys. Rev. B 88, 085128 (2013).
109.Huang, S., Li, X., Huang, H., Holmström, E., and Vitos, L.: Mechanical performance of FeCrCoMnAlx high-entropy alloys from first-principle. Mater. Chem. Phys. 210, 37 (2018).
110.Tian, F., Varga, L.K., Chen, N., Shen, J., and Vitos, L.: Ab initio design of elastically isotropic TiZrNbMoVx high-entropy alloys. J. Alloys Compd. 599, 19 (2014).
111.Cao, P.Y., Ni, X.D., Tian, F.Y., Varga, L.K., and Vitos, L.: Ab initio study of AlxMoNbTiV high-entropy alloys. J. Phys.: Condens. Matter 27, 075401 (2015).
112.Qiu, S., Miao, N., Zhou, J., Guo, Z., and Sun, Z.: Strengthening mechanism of aluminum on elastic properties of NbVTiZr high-entropy alloys. Intermetallics 92, 7 (2018).
113.Feng, W.Q., Qi, Y., and Wang, S.Q.: Effects of short-range order on the magnetic and mechanical properties of FeCoNi(AlSi)x high entropy alloys. Metals 7 (2017).
114.Tian, F.Y., Varga, L.K., Shen, J., and Vitos, L.: Calculating elastic constants in high-entropy alloys using the coherent potential approximation: Current issues and errors. Comput. Mater. Sci. 111, 350 (2016).
115.Huang, H., Wu, Y., He, J., Wang, H., Liu, X., An, K., Wu, W., and Lu, Z.: Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv. Mater. 29, 1701678 (2017).
116.Guo, S., Ng, C., Lu, J., and Liu, C.T.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).
117.Wang, Z.J., Guo, S., and Liu, C.T.: Phase selection in high-entropy alloys: From nonequilibrium to equilibrium. JOM 66, 1966 (2014).
118.Guo, S. and Liu, C.T.: Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int. 21, 433 (2011).
119.Liu, L., Zhu, J.B., Zhang, C., Li, J.C., and Jiang, Q.: Microstructure and the properties of FeCoCuNiSnx high entropy alloys. Mater. Sci. Eng., A 548, 64 (2012).
120.Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., and Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).
121.Wang, X.F., Zhang, Y., Qiao, Y., and Chen, G.L.: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 15, 357 (2007).
122.Liu, L., Zhu, J.B., Li, L., Li, J.C., and Jiang, Q.: Microstructure and tensile properties of FeMnNiCuCoSnx high entropy alloys. Mater. Des. 44, 223 (2013).
123.Praveen, S., Murty, B.S., and Kottada, R.S.: Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater. Sci. Eng., A 534, 83 (2012).
124.Huang, S., Vida, Á., Heczel, A., Holmström, E., and Vitos, L.: Thermal expansion, elastic and magnetic properties of FeCoNiCu-based high-entropy alloys using first-principle theory. JOM 69, 2107 (2017).
125.Sato, K., Bergqvist, L., Kudrnovský, J., Dederichs, P.H., Eriksson, O., Turek, I., Sanyal, B., Bouzerar, G., Katayama-Yoshida, H., Dinh, V.A., Fukushima, T., Kizaki, H., and Zeller, R.: First-principles theory of dilute magnetic semiconductors. Rev. Mod. Phys. 82, 1633 (2010).
126.Simmons, G.: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (MIT Press, Cambridge, 1971).
127.Nye, J.F.: Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, New York, 1985).
128.Grimvall, G.: Thermophysical Properties of Materials (North-Holland, Amsterdam, 1999).
129.Steinle-Neumann, G., Stixrude, L., and Cohen, R.E.: First-principles elastic constants for the hcp transition metals Fe, Co, and Re at high pressure. Phys. Rev. B 60, 791 (1999).
130.Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., Sect. A 65, 349 (1952).
131.Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., and Burke, K.: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).
132.Tian, F., Varga, L.K., and Vitos, L.: Predicting single phase CrMoWX high entropy alloys from empirical relations in combination with first-principles calculations. Intermetallics 83, 9 (2017).

Keywords

Type Description Title
PDF
Supplementary materials

Huang et al. supplementary material
Appendices I-II

 PDF (344 KB)
344 KB

Elasticity of high-entropy alloys from ab initio theory

  • Shuo Huang (a1), Fuyang Tian (a2) and Levente Vitos (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed