Skip to main content Accessibility help
×
×
Home

Electrically coupling complex oxides to semiconductors: A route to novel material functionalities

  • J.H. Ngai (a1), K. Ahmadi-Majlan (a1), J. Moghadam (a1), M. Chrysler (a1), D. Kumah (a2), F.J. Walker (a2), C.H. Ahn (a2), T. Droubay (a3), Y. Du (a3), S.A. Chambers (a3), M. Bowden (a4), X. Shen (a5) and D. Su (a5)...
Abstract

Complex oxides and semiconductors exhibit distinct yet complementary properties owing to their respective ionic and covalent natures. By electrically coupling complex oxides to traditional semiconductors within epitaxial heterostructures, enhanced or novel functionalities beyond those of the constituent materials can potentially be realized. Essential to electrically coupling complex oxides to semiconductors is control of the physical structure of the epitaxially grown oxide, as well as the electronic structure of the interface. Here we discuss how composition of the perovskite A- and B-site cations can be manipulated to control the physical and electronic structure of semiconductor—complex oxide heterostructures. Two prototypical heterostructures, Ba1−x Sr x TiO3/Ge and SrZr x Ti1−x O3/Ge, will be discussed. In the case of Ba1−x Sr x TiO3/Ge, we discuss how strain can be engineered through A-site composition to enable the re-orientable ferroelectric polarization of the former to be coupled to carriers in the semiconductor. In the case of SrZr x Ti1−x O3/Ge we discuss how B-site composition can be exploited to control the band offset at the interface. Analogous to heterojunctions between compound semiconducting materials, control of band offsets, i.e., band-gap engineering, provides a pathway to electrically couple complex oxides to semiconductors to realize a host of functionalities.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: jngai@uta.edu
References
Hide All
1. McKee, R.A., Walker, F.J., and Chisholm, M.F.: Crystalline oxides on silicon: The first five monolayers. Phys. Rev. Lett. 81, 3014 (1998).
2. Reiner, J.W., Kolpak, A.M., Segal, Y., Garrity, K.F., Ismail-Beigi, S., Ahn, C.H., and Walker, F.J.: Crystalline oxides on semiconductors. Adv. Mater. 22, 2919 (2010).
3. Baek, S-H. and Eom, C.B.: Epitaxial integration of perovskite-based multifunctional oxides. Acta Mater. 61, 2734 (2013).
4. Imada, M., Fujimori, A., and Tokura, Y.: Metal-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998).
5. Dawber, M., Rabe, K.M., and Scott, J.F.: Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083 (2005).
6. Wu, Y-R. and Singh, J.: Polar heterostructure for multifunction devices: Theoretical studies. IEEE Trans. Electron Devices 52, 284 (2005).
7. Salahuddin, S. and Datta, S.: Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405 (2008).
8. Zutic, I., Fabian, J., and Das Sarma, S.: Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004).
9. Khaselev, O. and Turner, J.A.: A monolithic photovoltaic-photoelectroechemical device for hydrogen production via water splitting. Science 280, 425 (1998).
10. Hu, S., Shaner, M.R., Beardslee, J.A., Lichterman, M., Brunschwig, B.S., and Lewis, N.S.: Amorphous TiO₂ coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005 (2014).
11. Ji, L., McDaniel, M.D., Wang, S., Posadas, A.B., Li, X., Huang, H., Lee, J.C., Demkov, A.A., Bard, A.J., Ekerdt, J.G., and Yu, E.T.: A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nat. Nanotechnol. 10, 84 (2015).
12. Ngai, J.H., Kumah, D.P., Ahn, C.H., and Walker, F.J.: Hysteretic electrical transport in BaTiO3/Ba1−x Sr x TiO3/Ge heterostructures. Appl. Phys. Lett. 104, 062905 (2014).
13. Moghadam, J., Ahmadi-Majlan, K., Shen, X., Droubay, T., Bowden, M., Chrysler, M., Su, D., Chambers, S.A., and Ngai, J.H.: Band-gap engineering at a semiconductor–crystalline oxide interface. Adv. Mater. Interfaces 2, 1400497 (2015).
14. Rondinelli, J.M., May, S.J., and Freeland, J.W.: Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery. MRS Bull. 37, 261 (2012).
15. Choi, K., Biegalski, M., Li, Y., Sharan, A., Schubert, J., Uecker, R., Reiche, P., Chen, Y., Pan, X., Gopalan, V., Chen, L-Q., Schlom, D., and Eom, C.: Enhancement of ferroelectricity in strained BaTiO3 films. Science 306, 1005 (2004).
16. Takamura, Y., Chopdekar, R.V., Arenholz, E., and Suzuki, Y.: Control of the magnetic and magnetotrasnport properties of La0.7Sr0.3MnO3 thin films through epitaxial strain. Appl. Phys. Lett. 92, 162504 (2008).
17. Prellier, W., Rajeswari, M., Venkatesan, T., and Greene, R.: Effect of substrate-induced strain on the charge-ordering transition in Nd0.5Sr0.5MnO3 thin films. Appl. Phys. Lett. 75, 1446 (1999).
18. Meyers, D., Middey, S., Kareev, M., van Veenendaal, M., Moon, E.J., Gray, B.A., Liu, J., Freeland, J.W., and Chakhalian, J.: Strain-modulated Mott transition in EuNiO3 ultrathin films. Phys. Rev. B: Condens. Matter Mater. Phys. 88, 075116 (2013).
19. Matthews, J.W.: In Coherent Interfaces and Misfit Dislocations: Epitaxial Growth Part B, Matthews, J.W., ed. (Academic Press Inc., New York, 1975); p. 559.
20. Reiner, J.W., Walker, F.J., McKee, R.A., Billman, C.A., Junquera, J., Rabe, K.M., and Ahn, C.H.: Ferroelectric stability of BaTiO3 in a crystalline oxide on semiconductor structure. Phys. Status Solidi B 241, 2287 (2004).
21. Chandra, P. and Littlewood, P.B.: In A Landau Primer for Ferroelectrics: Physics of ferroelectrics: A modern Perspective, Rabe, K., Ahn, C.H., and Triscone, J.-M., eds. (Topics in Applied Physics, Springer-Verlag, Berlin Heidelberg, 2007); p. 69.
22. Vaithyanathan, V., Lettieri, J., Tian, W., Sharan, A., Vasudevarao, A., Li, Y.L., Kochhar, A., Ma, H., Levy, J., Zschack, P., Woicik, J.C., Chen, L.Q., Gopalan, V., and Schlom, D.G.: c-Axis oriented eptiaxial BaTiO3 films on (001) Si. J. Appl. Phys. 100, 024108 (2006).
23. Ponath, P., Fredrickson, K., Posadas, A.B., Ren, Y., Wu, X., Vasudevan, R.K., Okatan, M.B., Jesse, S., Aoki, T., McCartney, M.R., Smith, D.J., Kalinin, S.V., Lai, K., and Demkov, A.A.: Carrier density modulation in a germanium heterostructure by ferroelectric switching. Nat. Commun. 6, 6067 (2014).
24. Contreras-Guerrero, R., Veazey, J.P., Levy, J., and Droopad, R.: Properties of epitaxial BaTiO3 deposited on GaAs. Appl. Phys. Lett. 102, 012907 (2013).
25. Klein, A. and Chen, F.: Polarization dependence of Schottky barrier heights at interfaces of ferroelectrics determined by photoelectron spectroscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 86, 094105 (2012).
26. Wen, Z., Li, C., Wu, D., Li, A., and Ming, N.: Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater. 12, 617 (2013).
27. Fridkin, V.M.: Ferroelectric Semiconductors (Consultants Bureau, New York, 1980).
28. Okatan, M.B., Mantese, J.V., and Alpay, S.P.: Effect of space charge on the polarization hysteresis characteristics of monolithic and compositionally graded ferroelectrics. Acta Mater. 58, 39 (2010).
29. Robertson, J.: Band offsets of wide-band-gap oxides and implications on future electronic devices. J. Vac. Sci. Technol., B 18, 1785 (2000).
30. Amy, F., Wan, A., Kahn, A., Walker, F.J., and McKee, R.A.: Surface and interface chemical composition of thin epitaxial SrTiO3 and BaTiO3 . J. Appl. Phys. 96, 1601 (2004).
31. Chambers, S.A., Liang, Y., Yu, Z., Droopad, R., and Ramdani, J.: Band offset and structure of SrTiO3/Si(001) heterojunctions. J. Vac. Sci. Technol., A 19, 934 (2001).
32. Liang, Y., Kulik, J., Eschrich, T., Droopad, R., Yu, Z., and Maniar, P.: Hetero-epitaxy of perovskite oxides on GaAs(001) by molecular beam epitaxy. Appl. Phys. Lett. 85, 1217 (2004).
33. Kornblum, L., Morales-Acosta, M.D., Jin, E.N., Ahn, C.H., and Walker, F.J.: Transport at the epitaxial interface between germanium and functional oxides. Adv. Mater. Interfaces 2, 1500193 (2015).
34. Capasso, F.: Band-gap engineering: From physics and materials to new semiconductor devices. Science 235, 172 (1987).
35. Schafranek, R., Baniecki, J., Ishii, M., Kotaka, Y., Yamanka, K., and Kurihara, K.: Band offsets at the epitaxial SrTiO3/SrZrO3(001) heterojunction. J. Phys. D: Appl. Phys. 45, 055303 (2012).
36. Kajdos, A.P., Ouellette, D.G., Cain, T.A., and Stemmer, S.: Two-dimensional electron gas in a modulation-doped SrTiO3/Sr(Ti,Zr)O3 heterostructure. Appl. Phys. Lett. 103, 082120 (2013).
37. Rossel, C., Mereu, B., Marchiori, C., Caimi, D., Sousa, M., Guiller, A., Siegwart, H., Germann, R., Locquet, J-P., Fompeyrine, J., Webb, D.J., Dieker, C., and Seo, J.W.: Field-effect transistors with SrHfO3 as gate oxide. Appl. Phys. Lett. 89, 053506 (2006).
38. Jeon, S., Walker, F.J., Billman, C.A., McKee, R.A., and Hwang, H.: Electrical characteristics of epitaxially grown SrTiO3 on silicon for metal-insulator-semiconductor gate dielectric applications. IEEE Electron Device Lett. 24, 218 (2003).
39. Wallace, R.M., McIntyre, P.C., Kim, J., and Nishi, Y.: High-k gate dielectrics for CMOS technology. MRS Bull. 34, 493 (2009).
40. Kraut, E.A., Grant, R.W., Waldrop, J.W., and Kowalczyk, S.P.: Precise determination of the valence-band edge in X-ray photoemission spectra: Application to measurement of semiconductor interface potentials. Phys. Rev. Lett. 44, 1620 (1980).
41. Kraut, E.A., Grant, R.W., Waldrop, J.W., and Kowalczyk, S.P.: Semiconductor core-level to valence-band maximum binding-energy differences: Precise determination by X-ray photoelectron spectroscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 28, 1965 (1983).
42. Han, J-P. and Ma, T.P.: SrBi2Ta2O9 memory capacitor on Si with a silicon nitride buffer. App. Phys. Lett. 72, 1185 (1998).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed