Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-21T06:41:43.325Z Has data issue: false hasContentIssue false

Electromechanical anisotropy behavior in Pb0.88Eu0.08Ti1−yMnyO3 system: Role of 90° domain reversal

Published online by Cambridge University Press:  31 January 2011

O. Pérez Martínez*
Affiliation:
Departamento de Ingenieria Metalurgia y de Materiales, Universidad de Antioquia, Apartado Aéreo: 1226-Postal: 229-Ciudad Universitaria-Medellin, Colombia
J. M. Saniger Blesa
Affiliation:
Centro de Instrumentos, AP. 70-186 México 04510, Universidad Nacional Autónoma de México, México
A. Peláiz Barranco
Affiliation:
Facultad de Fisica, Instituto de Materiales y Reactivos para la Electrónica, Universidad de la Habana, San Lázaro y L, Vedado, La Habana 10400, Cuba
F. Calderón Piñar
Affiliation:
Facultad de Fisica, Instituto de Materiales y Reactivos para la Electrónica, Universidad de la Habana, San Lázaro y L, Vedado, La Habana 10400, Cuba
*
a) Address all correspondence to this author at Departamento de Ingeniería Metalurgia y de Materiales, Universidad de Antioquia, calle 67, 53-108, Bloque 18 of 240, Ciudad Universitaria-Medellin, Colombia.
Get access

Abstract

An indirect observation of 90° domain reversal under the influence of a poling field process was undertaken by an x-ray diffraction study in the Pb0.88Eu0.08Ti1™y MnyO3 (y = 0, 0.01, 0.02, and 0.03) piezoelectric anisotropic system. The optimum condition kp → 0 was achieved for y = 0.02 composition. A large percentage of 90° domain rotation was necessary, but not a sufficient condition for the ultrahigh electromechanical anisotropy manifestation. A large microstrain originated by structural defects in unpoled samples seemed to play a crucial role in the attainment of this piezoelectric anisotropy. A breaking in the translational periodicity due to induced vacancy in Pb and O sites by Eu3+ and Mn2+ substitutions was manifested in the nonuniform variance of the tetragonality (c/a), the large microstrain, and the detriment of crystallinity observed.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ueda, I., Jpn. J. Appl. Phys. 11(4), 450 (1972).CrossRefGoogle Scholar
2.Yamashita, Y., Yokoyama, K., Honda, H., and Okuma, H., Jpn. J. Appl. Phys. 22(Suppl. 20–4), 183 (1981).CrossRefGoogle Scholar
3.Takeuchi, H., Jyomura, S., Yamamoto, E., and Ito, Y., J. Acoust. Soc. Am. 72(4), 1114 (1982).CrossRefGoogle Scholar
4.Takeuchi, H., Jyomura, S., Nakaya, C., and Ishikawa, Y., Jpn. J. Appl. Phys. 22(Suppl. 22–2), 166 (1983).CrossRefGoogle Scholar
5.Durán, P., Fdez, J.F., Capel, F., Moure, C., J. Mater. Sci. 23, 4463 (1988).CrossRefGoogle Scholar
6.Durán, G.P., Fdez, J.F., Capel, F., Moure, C., J. Mater. Sci. 24, 447 (1989).CrossRefGoogle Scholar
7.Pérez Martínez, O., Calderón Piñar, F., Pénton, A., Suaste Gómez, E., Rivera Cruz, M., Leccabue, F., Bocelli, G., and Watts, B.E., Rev. Mex. Fís. 41(1), 85 (1995).Google Scholar
8.Pérez-Martínez, O., Calderón Piñar, F., Leccabue, F., and Watts, E.. Proc. Euromat 95, Conf. Ed. AIM (Milano, Italy, 1995), p. 529.Google Scholar
9.Subbarao, E.C., McQuarrie, M.C., and Buessem, , J. Appl. Phys. 28, 1194 (1957).CrossRefGoogle Scholar
10.Mendiola, J. and Pardo, L., Ferroelectrics 54, 199 (1984).CrossRefGoogle Scholar
11.Popovici, G. and Nicolau, P., J. Mater. Sci. Lett. 10, 379 (1991).CrossRefGoogle Scholar
12.Li, S., Huang, C-Y., Bhalla, A.S., and Cross, L.E., ISAF 1992 Proc. 401 (1992).Google Scholar
13.Zeng, Y.W., Xue, W.R., and Fu, G.F., J. Mater. Sci. 26, 4293 (1991).CrossRefGoogle Scholar
14.Zhong, W.L., Wang, Y.G., Yue, S.B., and Zhang, P.L., Solid State Commun. 90(6), 383 (1994).CrossRefGoogle Scholar
15.Cullity, B.D., Elements of X-Ray Diffraction, 2nd ed. (Addison Wesley, 1978), pp. 285290 and Appendix 12 p. 573.Google Scholar
16.IRE Standards on Piezoelectric Crystals, 49, 1161 (1961).CrossRefGoogle Scholar
17.Onoe, M., Tiersten, H., and Meitzler, A.H.. J. Acoust. Soc. Am. 35(1), 36 (1963).CrossRefGoogle Scholar
18.Shannon, R.D., Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
19.Izaki, T., Haneda, H., Watanabe, A., Uchida, Y., Tanaka, J., and Shirasaki, S., Jpn. J. Appl. Phys. 31, 3045 (1992).CrossRefGoogle Scholar
20.Izaki, T., and Watanabe, A., Fourth Euro Ceramics, edited by Gusmano, G., Traversa, E. 5, 33 (1995).Google Scholar
21.Landolt-Börnstein, , in Ferroelectric and Related Substances, Subvolume a: Oxides, New Series, Group III: Crystal and Solid State Physics, Vol. 16, edited by Hellwege, K.H. and Hellwege, A.M. (Springer-Verlag, Berlin, 1981). p. 79.Google Scholar
22.Rossetti, G.A., Cross, L.E., and Cline, J.P., J. Mater. Sci. 30, 24 (1995).CrossRefGoogle Scholar
23.Pérez Martínez, O., Saniger, J.M., Torres García, E., Flores, J.O., Calderon Piñar, F., Llópiz, J.C., and Peláiz Barranco, A., J. Mater. Sci. Lett. 16, 1161 (1997).Google Scholar