Skip to main content
×
×
Home

Encapsulation requirements to enable stable organic ultra-thin and stretchable devices

  • Vera Steinmann (a1) and Lorenza Moro (a1)
Abstract

In this paper, we will discuss stability and reliability requirements of organic electronic devices and evaluate different encapsulation approaches enabling stable organic ultra-thin and stretchable devices. We highlight the differences in requirements and encapsulation approaches for applications, including organic light emitting diode (OLED) displays, OLED lighting, photovoltaics, and sensors. Stability and reliability requirements addressed in this paper cover light management, mechanical characteristics, chemical compatibility, form factors, and durability. While flexible organic electronic devices have already been demonstrated and commercialized, so far only prototypes of ultra-thin and stretchable devices have been demonstrated. The technological progress is promising and by identifying the gaps between prototyping and product realization, we intend to stimulate further research and development in this area.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Encapsulation requirements to enable stable organic ultra-thin and stretchable devices
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Encapsulation requirements to enable stable organic ultra-thin and stretchable devices
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Encapsulation requirements to enable stable organic ultra-thin and stretchable devices
      Available formats
      ×
Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: lmoro@kateeva.com
References
Hide All
1.Tricoli, A., Nasiri, N., and De, S.: Wearable and miniaturized sensor technologies for personalized and preventive medicine. Adv. Funct. Mater. 27, 1 (2017).
2.Yokota, T., Zalar, P., Kaltenbrunner, M., Jinno, H., Matsuhisa, N., Kitanosako, H., Tachibana, Y., Yukita, W., Koizumi, M., and Someya, T.: Ultra-flexible organic photonic skin. Sci. Adv. 2, 1 (2016).
3.Lipomi, D.J. and Bao, Z.: Stretchable and ultraflexible organic electronics. MRS Bull. 42, 93 (2017).
4.Rogers, J.A.: Wearable electronics: Nanomesh on-skin electronics. Nat. Nanotechnol. (2017).
5.Thiyagarajan, K. and Jeong, U.: Strategies for stretchable polymer semiconductor layers. MRS Bull. 42, 98 (2017).
6.Lee, S., Reuveny, A., Reeder, J., Lee, S., Jin, H., Liu, Q., Yokota, T., Sekitani, T., Isoyama, T., Abe, Y., Suo, Z., and Someya, T.: A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 11, 1 (2016).
7.Wang, D., Wright, M., Elumalai, N.K., and Uddin, A.: Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 147, 255 (2016).
8.Leijtens, T., Bush, K., Cheacharoen, R., Beal, R., Bowring, A., McGehee, M.D., Tress, W., Schenk, K., Teuscher, J., Moser, J-E., Rensmo, H., Hagfeldt, A., Alam, M.A., Gupta, G., Lou, J., Ajayan, P.M., Bedzyk, M.J., Kanatzidis, M.G., and Mohite, A.D.: Towards enabling stable lead halide perovskite solar cells; Interplay between structural, environmental, and thermal stability. J. Mater. Chem. A 5, 11483 (2017).
9.Hashmi, S.G., Tiihonen, A., Martineau, D., Ozkan, M., Vivo, P., Kaunisto, K., Ulla, V., Zakeeruddin, S.M., and Grätzel, M.: Long term stability of air processed inkjet infiltrated carbon-based printed perovskite solar cells under intense ultra-violet light soaking. J. Mater. Chem. A 5, 4797 (2017).
10.Feng, L., Tang, W., Zhao, J., Yang, R., Hu, W., Li, Q., Wang, R., and Guo, X.: Unencapsulated air-stable organic field effect transistor by all solution processes for low power vapor sensing. Sci. Rep. 6, 20671 (2016).
11.Zhao, Y., Yan, L., Murtaza, I., Liang, X., Meng, H., and Huang, W.: A thermally stable anthracene derivative for application in organic thin film transistors. Org. Electron. 43, 105 (2017).
12.Gevorgyan, S.A., Madsen, M.V., Roth, B., Corazza, M., Hösel, M., Søndergaard, R.R., Jørgensen, M., and Krebs, F.C.: Lifetime of organic photovoltaics: Status and predictions. Adv. Energy Mater. 6, 1 (2016).
13.Yu, D., Yang, Y.Q., Chen, Z., Tao, Y., and Liu, Y.F.: Recent progress on thin-film encapsulation technologies for organic electronic devices. Opt. Commun. 362, 43 (2016).
14.Samsung: www.samsung.com (viewed on 03/09/2018).
15.Lee, J.: Samsung may release phones with bendable screens in 2017. Available at: https://www.bloomberg.com/news/articles/2016-06-07/samsung-said-to-consider-phones-with-bendable-screens-for-2017-ip4tgwz9 (published on 06/06/2016, accessed on 03/19/2018).
16.Moro, L. and Visser, R.J.: Barrier films for photovoltaics applications. In Organic Photovoltaics, Brabec, C., Dyakonov, V., and Scherf, U., eds. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2008); pp. 491510.
17.Adachi, C., Hattori, R., Kaji, H., and Tsujimura, T., eds.: Handbook Light-Emitting Diodes (Springer, Berlin, Heidelbergn, forthcoming), https://doi.org/10.1007/978-4-431-55761-6.
18.Apple: www.apple.com (viewed on 03/09/2018).
19.Kondakov, D.Y.: In OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes, Gaspar, D.J. and Polikarpov, E., eds. (CRC Press, Boca Raton, Florida, 2015); pp. 339364.
20.Moro, L.L., Krajewski, T.A., Rutherford, N.M., Philips, O., Visser, R.J., Gross, M.E., Bennett, W.D., and Graff, G.L.: Process and design of a multilayer thin film encapsulation of passive matrix OLED displays. In Proceedings of SPIE—The International Society for Optical Engineering 5214 (Organic Light-Emitting Materials and Devices VII), In Kafafi, Z.H. and Lane, P.A., eds. (SPIE, San Diego, California, 2004); p. 83.
21.Burrows, P.E., Graff, G.L., Gross, M.E., Martin, P.M., Hall, M., Mast, E., Bonham, C.C., Bennett, W.D., Michalski, L.A., Weaver, M.S., Brown, J.J., Fogarty, D., and Sapochak, L.S.: In Kafafi, Z.H., ed. (2001); p. 75.
22.Madigan, C., Van Slyke, S., and Vronsky, E.: Inkjet printing equipment for organic LED mass production. SPIE Newsroom, 1 (2015).
23.Graff, G.L., Williford, R.E., and Burrows, P.E.: Mechanisms of vapor permeation through multilayer barrier films: Lag time versus equilibrium permeation. J. Appl. Phys. 96, 1840 (2004).
24.Vogt, B.D., Lee, H-J., Prabhu, V.M., DeLongchamp, D.M., Lin, E.K., Wu, W., and Satija, S.K.: X-ray and neutron reflectivity measurements of moisture transport through model multilayered barrier films for flexible displays. J. Appl. Phys. 97, 114509 (2005).
25.Chu, X., Moro, L., and Visser, R.J.: Anal fail modes multilayer thin film encapsulation OLED devices Ca film. Presented at the IDW '04, The 11th International Display Workshop Nilgata, Japan, 2004.
26.Moro, L., Chu, X., and Hirayama, H.: A mass manufacturing process for Barix encapsulation of OLED displays: A reduced number of dyads, higher throughput and 1.5 mm edge seal. In IMID/IDMC '06 Digest (Daegu, South Korea, 2006); pp. 754758.
27.Lin, S., Chu, X., and Rosenblum, P.M.: Ultra-barrier coatings enabled by inkjet print. In Spring 2010 Meeting of the American Chemical Society—Division of Polymeric Materials: Science and Engineering (San Francisco, California, 2010).
28.Jin, D-U., Lee, J-S., Kim, T-W., An, S-G., Straykhilev, D., Pyo, Y-S., Kim, H-S., Lee, D-B., Mo, Y-G., Kim, H-D., and Chung, H-K.: 65.2: Distinguished paper: World-largest (6.5″) flexible full color top emission AMOLED display on plastic film and its bending properties. SID Int. Symp. Dig. Tech. Pap. 40, 983 (2009).
29.Hebb, J.: Printed Electronics USA (Santa Clara, California, 2017).
30.Madigan, C.F., Hauf, C.R., Barkley, L.D., Harjee, N., Vronsky, E., and Van Slyke, S.A.: 30.2: Invited paper: Advancements in inkjet printing for OLED mass production. SID Int. Symp. Dig. Tech. Pap. 45, 399 (2014).
31.Tsujimura, T.: OLED Displays (John Wiley & Sons, Inc., Hoboken, New Jersey, 2012); pp. 205223.
32.Ghosh, A., Donoghue, E.P., Khayrullin, I., Ali, T., Wacyk, I., Tice, K., Vazan, F., Sziklas, L., Fellowes, D., and Draper, R.: 62-1: Invited paper: Directly patterened 2645 PPI full color OLED microdisplay for head mounted wearables. SID Int. Symp. Dig. Tech. Pap. 47, 837 (2016).
33.Levy, S.: Google glass 2.0 is a startling second act. Available at: https://www.wired.com/story/google-glass-2-is-here (published on 07/18/2017, accessed on 03/19/2018).
34.Mobile World Congress, 2017.
35.Wittmann, S.: Printed Electronics USA (Santa Clara, California, 2017).
36.Hong, J-H., Shin, J.M., Kim, G.M., Joo, H., Park, G.S., Hwang, I.B., Kim, M.W., Park, W-S., Chu, H.Y., and Kim, S.: 9.1-inch stretchable AMOLED display based on LTPS technology. J. Soc. Inf. Disp. 25, 194 (2017).
37.Mathas, C.: Will the auto industry adopt OLED lighting? Available at: https://www.edn.com/electronics-blogs/led-zone/4458025/Will-the-auto-industry-adopt-OLED-lighting (published on 02/24/2017, accessed on 03/19/2018).
38.Nguyen, T.C.: What you need to know about OLED lighting. Available at: https://www.washingtonpost.com/news/innovations/wp/2015/01/05/what-you-need-to-know-about-oled-lighting/?utm_term=.b64364d7c26a (published on 01/05/2015, accessed on 03/19/2018).
39.Osram: www.osram.com (viewed on 03/09/2018).
40.National renewable energy laboratory, 2017.
41.Saliba, M., Buonassisi, T., Grätzel, M., Abate, A., Tress, W., and Hagfeldt, A.: Promises and challenges of perovskite solar cells. Science 744, 739 (2017).
42.Roesch, R., Faber, T., Von Hauff, E., Brown, T.M., Lira-Cantu, M., and Hoppe, H.: Procedures and practices for evaluating thin-film solar cell stability. Adv. Energy Mater. 5, 1 (2015).
43.Steinmann, V., Brandt, R.E., and Buonassisi, T.: Photovoltaics: Non-cubic solar cell materials. Nat. Photonics 9, 355 (2015).
44.Brandt, R.E., Stevanović, V., Ginley, D.S., and Buonassisi, T.: Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: Beyond hybrid lead halide perovskites. MRS Commun. 5, 265 (2015).
45.Koushik, D., Verhees, W.J.H., Kuang, Y., Veenstra, S., Zhang, D., Verheijen, M.A., Creatore, M., and Schropp, R.E.I.: High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture. Energy Environ. Sci. 10, 91 (2017).
46.Cheng, P. and Zhan, X.: Stability of organic solar cells: Challenges and strategies. Chem. Soc. Rev. 45, 2544 (2016).
47.Grossiord, N., Kroon, J.M., Andriessen, R., and Blom, P.W.M.: Degradation mechanisms in organic photovoltaic devices. Org. Electron. 13, 432 (2016).
48.Krebs, F.C., Carlé, J.E., Cruys-Bagger, N., Andersen, M., Lilliedal, M.R., Hammond, M.A., and Hvidt, S.: Lifetimes of organic photovoltaics: Photochemistry, atmosphere effects and barrier layers in ITO-MEHPPV:PCBM-aluminum devices. Sol. Energy Mater. Sol. Cells 86, 499 (2005).
49.Norrman, K., Larsen, N.B., and Krebs, F.C.: Lifetimes of organic photovoltaics: Combining chemical and physical characterisation techniques to study degradation mechanisms. Sol. Energy Mater. Sol. Cells 90, 2793 (2006).
50.Neugebauer, H., Brabec, C., Hummelen, J.C., and Sariciftci, N.S.: Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells. Sol. Energy Mater. Sol. Cells 61, 35 (2000).
51.Hauch, J.A., Schilinsky, P., Choulis, S.A., Rajoelson, S., and Brabec, C.J.: The impact of water vapor transmission rate on the lifetime of flexible polymer solar cells. Appl. Phys. Lett. 93, 103306 (2008).
52.Jordan, D.C. and Kurtz, S.R.: Photovoltaic degradation rates-an analytical review. Prog. Photovoltaics Res. Appl. 21, 12 (2013).
53.Powell, D.M., Fu, R., Horowitz, K., Basore, P.A., Woodhouse, M., and Buonassisi, T.: The capital intensity of photovoltaics manufacturing: Barrier to scale and opportunity for innovation. Energy Environ. Sci. 8, 3395 (2015).
54.Powell, D.M., Winkler, M.T., Choi, H.J., Simmons, C.B., Needleman, D.B., and Buonassisi, T.: Crystalline silicon photovoltaics: A cost analysis framework for determining technology pathways to reach baseload electricity costs. Energy Environ. Sci. 5, 5874 (2012).
55.Powell, D.M., Winkler, M.T., Goodrich, A., and Buonassisi, T.: Modeling the cost and minimum sustainable price of crystalline silicon photovoltaic manufacturing in the United States. IEEE J. Photovolt. 3, 662 (2013).
56.Mulligan, C.J., Wilson, M., Bryant, G., Vaughan, B., Zhou, X., Belcher, W.J., and Dastoor, P.C.: A projection of commercial-scale organic photovoltaic module costs. Sol. Energy Mater. Sol. Cells 120, 9 (2014).
57.Deibel, C. and Dyakonov, V.: Polymer-fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 73, 96401 (2010).
58.Beckman, B.L.: All-girl engineer team invents solar-powered tent for the homeless. Available at: https://mashable.com/2017/06/15/diy-girls-solar-powered-tent-homeless/#h0IA4T9PSSql (published on 06/15/2017).
59.Belluck, P.: First digital pill approved to worries about biomedical ‘big brother’. Available at: https://www.nytimes.com/2017/11/13/health/digital-pill-fda.html, New York Times (published on 11/13/2017, accessed on 03/19/2018).
60.Someya, T., Bao, Z., and Malliaras, G.G.: The rise of plastic bioelectronics. Nature 540, 379 (2016).
61.Kaltenbrunner, M., Sekitani, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., Drack, M., Schwödiauer, R., Graz, I., Bauer-Gogonea, S., Bauer, S., and Someya, T.: An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458 (2013).
62.Karim, F. and Zeadally, S.: Energy harvesting in wireless sensor networks: A comprehensive review. Renew. Sust. Energ. Rev. 55, 1041 (2016).
63.Xu, J., Zhang, J., Zheng, X., Wei, X., and Han, J.: Wireless sensors in farmland environmental monitoring. In 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (IEEE, Xi'an, China, 2015); pp. 372379.
64.Srbinovska, M., Gavrovski, C., Dimcev, V., and Krkoleva, A.: Environmental parameters monitoring in precision agriculture using wireless sensor networks. J. Clean. Prod. 88, 297 (2015).
65.Ruiz-garcia, L., Lunadei, L., Barreiro, P., and Robla, J.I.: A review of wireless sensor technologies and applications in agriculture and food industry: State of the art and current trends. Sensors 9, 4728 (2009).
66.Khanal, S., Fulton, J., and Shearer, S.: An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput. Electron. Agric. 139, 22 (2017).
67.Zang, Y., Huang, D., Di, C., and Zhu, D.: Device engineered organic transistors for flexible sensing applications. Adv. Mater. 28, 4549 (2016).
68.Vuuren, R.D.J., Armin, A., Pandey, A.K., Burn, P.L., and Meredith, P.: Organic photodiodes: The future of full color detection and image sensing. Adv. Mater. 28, 4766 (2016).
69.de Goede, J., Bouten, P., Médico, L., Leterrier, Y., Månson, J-A., and Nisato, G.: Failure of brittle functional layers in flexible electronic devices. MRS Online Proc. Libr. 854, U9.2 (2004).
70.Nisato, G., Kuilder, M., Bouten, P., Moro, L., Philips, O., and Rutherford, N.: P-88: Thin film encapsulation for OLEDs: Evaluation of multi-layer barriers using the Ca test. SID Int. Symp. Dig. Tech. Pap. 34, 550 (2003).
71.Kim, H., Singh, A.K., Wang, C-Y., Fuentes-Hernandez, C., Kippelen, B., and Graham, S.: Experimental investigation of defect-assisted and intrinsic water vapor permeation through ultrabarrier films. Rev. Sci. Instrum. 87, 33902 (2016).
72.Bulusu, A., Graham, S., Bahre, H., Behm, H., Böke, M., Dahlmann, R., Hopmann, C., and Winter, J.: The mechanical behavior of ALD-polymer hybrid films under tensile strain. Adv. Eng. Mater. 17, 1057 (2015).
73.McKenna, G.B., Leterrier, Y., and Schultheisz, C.R.: The evolution of material properties during physical aging. Polym. Eng. Sci. 35, 403 (1995).
74.Novoa, F.D., Miller, D.C., and Dauskardt, R.H.: Adhesion and debonding kinetics of photovoltaic encapsulation in moist environments. Prog. Photovoltaics Res. Appl. 24, 183 (2016).
75.Shivakumar, R., Tippabhotla, S.K., Handara, V.A., Illya, G., Tay, A.A.O., Novoa, F., Dauskardt, R.H., and Budiman, A.S.: Fracture mechanics and testing of interface adhesion strength in multilayered structures—Application in advanced solar PV materials and technology. Procedia Eng. 139, 47 (2016).
76.Cai, C., Miller, D.C., Tappan, I.A., and Dauskardt, R.H.: Degradation of thermally-cured silicone encapsulant under terrestrial UV. Sol. Energy Mater. Sol. Cells 157, 346 (2016).
77.Yuasa System Co. Ltd: www.yuasa-system.jp (viewed on 03/09/2018).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 9
Total number of PDF views: 46 *
Loading metrics...

Abstract views

Total abstract views: 142 *
Loading metrics...

* Views captured on Cambridge Core between 2nd July 2018 - 23rd July 2018. This data will be updated every 24 hours.