Skip to main content Accessibility help

Energy considerations regarding yield points during indentation

  • D. F. Bahr (a1), D. E. Wilson (a1) and D. A. Crowson (a2)


Two experiments that probe the nature of the rapid transition from elastic to plastic deformation are described. The load, and therefore stress, at which this yield point occurs is shown to be relatively independent of temperature in an iron alloy. When stresses lower than those required to generate a yield point during loading are applied for times between seconds and minutes, yielding occurs while the sample is under an applied stress. The time to generate a yield point increases as the applied stress is decreased. The possibilities of dislocation glide loop nucleation, double kink nucleation, and dislocation breakaway from pinning points are examined. Only glide loop nucleation appears to match the experimental observations. Criteria based on the stress-volume requirements of glide loop nucleation and the stress field underneath an indenter are presented which qualitatively describe the experimental data.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Gane, N. and Bowden, F. P., J. Appl. Phys. 39, 1432 (1968).
2.Hertz, H., Miscellaneous Papers by Heinrich Hertz, edited by Jones, D. E. and Schott, G. A. (Macmillan, London, 1896), pp. 163183.
3.Mann, A. B. and Pethica, J. B., Appl. Phys. Lett. 69, 907 (1996).
4.Gerberich, W.W., Venkataraman, S. K., Huang, H., Harvey, S. E., and Kohlstedt, D. L., Acta. Metall. Mater. 43, 1569 (1995).
5.Page, T.F., Oliver, W.C., and McHargue, C. J., J. Mater. Res. 7, 450 (1992).
6.Syed Asif, S. A. and Pethica, J. B., Philos. Mag. A. 76, 1105 (1997).
7.Bahr, D. F., Kramer, D. E., and Gerberich, W. W., Acta Mater. 46, 3605 (1998).
8.Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd ed. (Wiley, New York, 1982), pp. 168, 169, 531–544, 639–693, 757–759.
9.Michalske, T.A. and Houston, J. E., Acta Mater. 46, 391 (1998).
10.Gerberich, W.W., Nelson, J. C., Lilleodden, E.T., Anderson, P., and Wyrobek, J. T., Acta Mater. 44, 3585 (1996).
11.Bahr, D. F., Watkins, C. M., Kramer, D.E., and Gerberich, W.W., in Fundamentals of Nanoindentation and Nanotribology (Mater. Res. Soc. Symp. Proc. 522, Pittsburgh, PA, 1998), p. 83.
12.Mann, A. B., Serason, P. C., Pethica, J. B., and Weihs, T. P., in Thin Films: Stresses and Mechanical Properties VII, edited by Cammarata, R. C., Busso, E. P., Nastasi, M., and Oliver, W.C. (Mater. Res. Soc. Symp. Proc., 505, Pittsburgh, PA, 1998), p. 307.
13.Mann, A. B. and Pethica, J.B., Philos. Mag. A, (1999, in press).
14.Wu, T.W., J. Mater. Res. 6, 407 (1991).
15. Private communication, Nelson, J. C., University of Minnesota.
16.Corcoran, S. G., Colton, R. J., Lilleodden, E. T., and Gerberich, W.W., Phys. Rev. B 55, R16057 (1997).
17.Page, T.F., Oliver, W.C., and Mc, C. J.Hargue, J. Mater. Res. 7, 450 (1992).
18.Johnson, K. L., Contact Mechanics (Cambridge Press, Cambridge, 1985), pp. 8595.
19.Kamat, S. V. and Hirth, J. P., J. Appl. Phys. 67, 6844 (1990).
20.Kiely, J. D. and Houston, J. E., Phys. Rev. B 57, 12588 (1998).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed