Skip to main content
×
×
Home

Engineered 2D nanomaterials–protein interfaces for efficient sensors

  • Kiran Kumar Tadi (a1), Tharangattu N. Narayanan (a1), Sivaram Arepalli (a2), Kaustav Banerjee (a3), Sowmya Viswanathan (a4), Dorian Liepmann (a5), Pulickel M. Ajayan (a6) and Venkatesan Renugopalakrishnan (a7)...
Abstract

This article features the importance of nanomaterial–protein interfaces, with a special interest on two-dimensional (2D) nanomaterials, for next generation sensors and electronics. Graphene, the first isolated and studied 2D nanomaterial, is taken as the material of most interest and then focused on its engineering by heteroatom doping. The success of graphene engineering for sensors widened the search for better and efficient biosensor platforms of other layered materials such as boron nitride and transition metal dichalcogenides. But functionalization of 2D backbones with biomolecules often ends up with the disruption of the biological activities due to various reasons. This has to be fundamentally studied and corrected for the clinical implementation of these materials based novel sensing platforms in point-of-care devices and micro-fluidic chips. At the end, importance of various 2D materials–biomolecule interfaces is discussed, and MoS2 based label-free biosensor is highlighted. A method for the modification of MoS2–biomolecule interaction via covalent functionalization of oxygen functionalities in MoS2 is also proposed.

Copyright
Corresponding author
a) Address all correspondence to these authors. e-mail: tnn@tifrh.res.in or tn_narayanan@yahoo.com
b) e-mail: v.renugopalakrishnan@neu.edu
References
Hide All
1. Yang, Y., Asiri, A.M., Tang, Z., Du, D., and Lin, Y.: Graphene based materials for biomedical applications. Mater. Today 16(10), 365 (2013).
2. Pumera, M.: Graphene in biosensing. Mater. Today 14(7–8), 308 (2011).
3. Ci, L., Song, L., Jin, C., Jariwala, D., Wu, D., Li, Y., Srivastava, A., Wang, Z.F., Storr, K., Balicas, L., Liu, F., and Ajayan, P.M.: Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430 (2010).
4. Geim, A.K. and Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419 (2013).
5. Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Christian Kemp, K., Hobza, P., Zboril, R., and Kim, K.S.: Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112(11), 6156 (2012).
6. Qiyuan, H., Shixin, W., Zongyou, Y., and Zhang, H.: Graphene-based electronic sensors. Chem. Sci. 3, 1764 (2012).
7. Vineesh, T.V., Alwarappam, S., and Narayanan, T.N.: The improved electrochemical performance of cross-linked 3D graphene nanoribbon monolith electrodes. Nanoscale 7, 6504 (2015).
8. Kundu, S., Yadav, R.M., Shelke, M.V., Narayanan, T.N., Vajtai, R., Ajayan, P.M., and Pillai, V.K.: Synthesis of N, F and S Co-doped graphene quantum dots. Nanoscale 7, 11515 (2015).
9. Yang, X., Zhang, X., Ma, Y., Huang, Y., Wang, Y., and Chen, Y.: Super paramagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 19, 2710 (2009).
10. Singh, R., Pantarotto, D., Lacerda, L., Pastorin, G., Klumpp, C., Prato, M., Bianco, A., and Kostarelos, K.: Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. U. S. A. 103, 3357 (2006).
11. Li, X., Huang, X., Liu, D., Wang, X., Song, S., Zhou, L., and Zhang, H.: Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. J. Phys. Chem. C 115, 21567 (2011).
12. Cong, H.P., He, J.J., Lu, Y., and Yu, S.H.: Water-soluble magnetic-functionalized reduced graphene oxide sheets: In situ synthesis and magnetic resonance imaging applications. Small 6, 169 (2010).
13. Miao, X., Tongay, S., Petterson, M.K., Berke, K., Rinzler, A.G., Appleton, B.R., and Hebard, A.F.: High efficiency graphene solar cells by chemical doping. Nano Lett. 12, 2745 (2012).
14. Chen, D., Tang, L.H., and Li, J.H.: Graphene based materials in electrochemistry. Chem. Soc. Rev. 39, 3157 (2010).
15. Min, S.K., Kim, W.Y., Cho, Y., and Kim, K.S.: Fast DNA sequencing with a graphene-based nanochannel device. Nat. Nanotechnol. 6, 162 (2011).
16. Loo, A.H., Bonanni, A., Ambrosi, A., Poh, H.L., and Pumera, M.: Impedimetric immunoglobulin G immunosensor based on chemically modified graphenes. Nanoscale 4(3), 921 (2012).
17. Loo, A.H., Bonanni, A., and Pumera, M.: Impedimetric thrombin aptasensor based on chemically modified graphenes. Nanoscale 4(1), 143 (2012).
18. Hou, L., Cui, Y., Xu, M., Gao, Z., Huang, J., and Tang, D.: Graphene oxide-labeled sandwich-type impedimetric immunoassay with sensitive enhancement based on enzymatic 4-chloro-1-naphthol oxidation. Biosens. Bioelectron. 47, 149 (2013).
19. Nair, R.R., Wu, H.A., Jayaram, P.N., Grigorieva, I.V., and Geim, A.K.: Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335, 442 (2012).
20. Zboril, R., Karlicky, F., Bourlinos, A.B., Athanasios, B., Steriotis, T.A., Stubos, A.K., Georgakilas, V., Safarova, K., Jancik, D., Trapalis, C., and Otyepka, M.: Graphene fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene. Small 6, 2885 (2010).
21. Karlicky, F., Zboril, R., and Otyepk, M.: Band gaps and structural properties of graphene halides and their derivates: A hybrid functional study with localized orbital basis sets. J. Chem. Phys. 137, 034709 (2012).
22. Zhang, Y.H., Zhou, K.G., Xie, K.F., Zeng, J., Zhang, H.L., and Peng, Y.: Band gaps and structural properties of graphene halides and their derivates: A hybrid functional study with localized orbital basis sets. Nanotechnology 21, 065201 (2010).
23. Crevillen, A.G., Avila, M., Pumera, M., Gonzalez, M.C., and Escarpa, A.: Food analysis on microfluidic devices using ultrasensitive carbon nanotubes detectors. Anal. Chem. 79, 7408 (2007).
24. Crevillen, A.G., Pumera, M., Gonzales, M.C., and Escarpa, A.: Towards lab-on-a-chip approaches in real analytical domains based on microfluidic chips/electrochemical multi-walled carbon nanotube platforms. Lab Chip 9, 346 (2009).
25. Sudibya, H.G., He, Q.Y., Zhang, H., and Chen, P.: Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films. ACS Nano 5, 1990 (2011).
26. He, Q.Y., Sudibya, H.G., Yin, Z.Y., Wu, S.X., Li, H., Boey, F., Huang, W., Chen, P., and Zhang, H.: Centimeter-long and large-scale micropatterns of reduced graphene oxide films: Fabrication and sensing applications. ACS Nano 4, 3201 (2010).
27. Yi, J.W., Park, J., Singh, N.J., Lee, I.J., Kim, K.S., and Kim, B.H.: Quencher-free molecular beacon: Enhancement of the signal-to-background ratio with graphene oxide. Bioorg. Med. Chem. Lett. 21, 704 (2011).
28. Lee, J.S., Joung, H.A., Kim, M.G., and Park, C.B.: Nanopore translocation dynamics of a single DNA-bound protein. ACS Nano 6, 2978 (2012).
29. Kodali, V.K., Scrimgeour, J., Kim, S., Hankinson, J.H., Carrol, K.M., Heer, W.A., Berger, C., and Curtis, J.E.: Nonperturbative chemical modification of graphene for protein micropatterning. Langmuir 27, 863 (2011).
30. Alava, T., Jason Mann, A., Théodore, C., Benitez, J.J., William, R.D., Parpia, J.M., and Craighead, H.G.: Control of the graphene-protein interface is required to preserve adsorbed protein function. Anal. Chem. 85, 2754 (2013).
31. Haynes, C.A. and Norde, W.: Globular proteins at solid/liquid interfaces. Colloids Surf., B 2, 517 (1994).
32. Roach, P., Farrar, D., and Perry, C.C.: Interpretation of protein adsorption: Surface-induced conformational changes. J. Am. Chem. Soc. 127, 8168 (2005).
33. Green, A.A. and Hersam, M.C.: Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9, 4031 (2009).
34. Gurusaran, M., Rai, D., Qian, S., Weiss, K., Urban, V., Li, P., Ma, L., Narayanan, T.N., Ajayan, P.M., Sekar, K., Viswanathan, S., and Renugopalakrishanan, V.: Small angle neutron scattering studies of glucose oxidase immobilized on single layer graphene: Relevant to protein microfluidic chip. Biophys. J. 108(2), 327a (2015).
35. Thirumalai, D., Reddy, G., and Straub, J.E.: Role of water in protein aggregation and amyloid polymorphism. Acc. Chem. Res. 45(1), 83 (2012).
36. Zhang, Y., Wu, C., Guo, S., and Zhang, J.: Interactions of graphene and graphene oxide with proteins and peptides. Nanotechnol. Rev. 2(1), 27 (2013).
37. Hashim, D.P., Narayanan, T.N., Romo-Herrera, J.M., Cullen, D.A., Hahm, M.G., Lezzi, P., R Suttle, J., Kelkhoff, D., Munoz-Sandoval, E., Ganguli, S., Roy, A.K., Smith, D.J., Vajtai, R., Sumpter, B.G., Meunier, V., Terrones, H., Terrones, M., and Ajayan, P.M.: Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Sci. Rep. 2, 363 (2012).
38. Kumar, N., Gupta, B.K., Srivastava, A.K., Patel, H.S., Kumar, P., Bannerjee, I., Narayanan, T.N., and Varma, G.D.: Multifunctional two-dimensional reduced graphene oxide thin film for gas sensing and antibacterial applications. Sci. Adv. Mater. 7(6), 1125 (2015).
39. Sudeep, P.M., Narayanan, T.N., Ganesan, A., Shaijumon, M.M., Yang, H., Ozden, S., Patra, P.K., Pasquali, M., Vajtai, R., Ganguli, S., Roy, A.K., Anantharaman, M.R., and Ajayan, P.M.: Covalently interconnected three-dimensional graphene oxide solids. ACS Nano 7(8), 7034 (2013).
40. Wang, X., Sun, G., Routh, P., Kim, D.H., Huangb, W., and Chen, P.: Heteroatom-doped graphene materials: Syntheses, properties and applications. Chem. Soc. Rev. 43, 7067 (2014).
41. Liu, L. and Shen, Z.: Bandgap engineering of graphene: A density functional theory study. Appl. Phys. Lett. 95, 252104 (2009).
42. Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5, 487 (2010).
43. Liu, Y., Dong, X., and Chen, P.: Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 41, 2283 (2012).
44. Chang, H., Tang, L., Wang, Y., Jiang, J., and Li, J.: Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal. Chem. 82, 2341 (2010).
45. Wang, Y., Li, Z., Hu, D., Lin, C-T., Li, J., and Lin, Y.: Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc. 132, 9274 (2010).
46. Lu, C.H., Zhu, C.L., Li, J., Liu, J.J., Chen, X., and Yang, H.H.: Using graphene to protect DNA from cleavage during cellular delivery. Chem. Commun. 46, 3116 (2010).
47. Liu, Z., Robinson, J.T., Sun, X., and Dai, H.: PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130, 10876 (2008).
48. Sun, Q., Liu, Z., Welsher, K., Robinson, J.T., Goodwin, A., Zaric, S., and Dai, H.: Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1, 203 (2008).
49. Huang, H., Li, Z., She, J., and Wang, W.: Oxygen density dependent band gap of reduced graphene oxide. J. Appl. Phys. 111, 054317 (2012).
50. Mathkar, A., Tozier, D., Cox, P., Ong, P., Galande, C., Balakrishnan, K., Mohana Reddy, A.L., and Ajayan, P.M.: Controlled, stepwise reduction and band gap manipulation of graphene oxide. J. Phys. Chem. Lett. 3, 986 (2012).
51. Wu, M., Cao, C., and Jiang, J.Z.: Light non-metallic atom (B, N, O and F)-doped graphene: A first-principles study. Nanotechnology 21, 505202 (2010).
52. Martins, T.B., Miwa, R.H., Silva, A.J.R.D., and Fazzio, A.: Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett. 98, 196803 (2007).
53. Panchokarla, L.S., Subrahmanyam, K.S., Saha, S.K., Govindaraj, A., Krishnamurthy, H.R., Waghmare, U.V., and Rao, C.N.R.: Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21, 4726 (2009).
54. Li, Z., Zhang, Z.Y., Liang, R.P., Li, Y.H., and Qiu, J.D.: Boron-doped graphene quantum dots for selective glucose sensing based on the “abnormal” aggregation-induced photoluminescence enhancement. Anal. Chem. 86, 4423 (2014).
55. Kong, R.X.K. and Chen, Q.W.: The positive influence of boron-doped graphene with pyridine as a probe molecule on SERS: A density functional theory study. J. Mater. Chem. 22, 15336 (2012).
56. Usachov, D., Vilkov, O., Gruneis, A., Haberer, D., Fedorov, A., Adamchuk, V.K., Preobrajenski, A.B., Dudin, P., Barinov, A., Oehzelt, M., Laubschat, C., and Vyalikh, D.V.: Nitrogen-doped graphene: Efficient growth, structure, and electronic properties. Nano Lett. 11, 5401 (2011).
57. Ruitao, L., Li, Q., Botello-Mendez, A.R., Hayashi, T., Wang, B., Berkdemir, A., Hao, Q., Laura El, A., Cruz-Silva, R., Gutierrez, H.R., Kim, Y.A., Muramatsu, H., Zhu, J., Endo, M., Terrones, H., Charlier, J.C., Pan, M., and Terrones, M.: Nitrogen-doped graphene: Beyond single substitution and enhanced molecular sensing. Sci. Rep. 2, 586 (2012).
58. Sheng, S.Z.H., Zheng, X.Q., Xu, J.Y., Bao, W.J., Wang, F.B., and Xia, X.H.: Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron. 34, 125 (2012).
59. Fan, T.H.X., Li, Y., Wu, D., Ma, H.M., Mao, K.X., Fan, D.W., Du, B., Li, H., and Wei, Q.: Electrochemical bisphenol A sensor based on N-doped graphene sheets. Anal. Chim. Acta 711, 24 (2012).
60. Mukherjee, S. and Kaloni, T.P.: Electronic properties of boron and nitrogen doped graphene: A first principles study. J. Nanopart. Res. 14, 1059 (2012).
61. Muchharla, B., Pathak, A., Liu, Z., Song, L., Jayasekera, T., Kar, S., Vajtai, R., Balicas, L., Ajayan, P.M., Talapatra, S., and Ali, N.: Tunable electronics in large-area atomic layers of boron–nitrogen–carbon. Nano Lett. 13, 3476 (2013).
62. Yang, G.H., Zhou, Y.H., Wu, J.J., Cao, J.T., Li, L.L., Liu, H.Y., and Zhu, J.J.: Microwave-assisted synthesis of nitrogen and boron co-doped graphene and its application for enhanced electrochemical detection of hydrogen peroxide. RSC Adv. 3, 22597 (2013).
63. Denis, P.A.: Concentration dependence of the band gaps of phosphorus and sulfur doped graphene. Comput. Mater. Sci. 67, 203 (2013).
64. Leenaerts, O., Peelaers, H., Hernandez-Nieves, A.D., Partoens, B., and Peeters, F.M.: First-principles investigation of graphene fluoride and graphane. Phys. Rev. B 82, 195436 (2010).
65. Boopathi, S., Narayanan, T.N., and Senthil Kumar, S.: Improved heterogeneous electron transfer kinetics of fluorinated graphene derivaties. Nanoscale 6, 10140 (2014).
66. Yang, M.M., Zhou, L., Wang, J.Y., Liu, Z.F., and Liu, Z.R.: Evolutionary chlorination of graphene: From charge-transfer complex to covalent bonding and nonbonding. J. Phys. Chem. C 116, 844 (2012).
67. Poh, H.L., Simek, P., Sofer, Z., and Pumera, M.: Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas. ACS Nano 7(6), 5262 (2013).
68. Denis, P.A., Faccio, R., and Mombru, A.W.. Is it possible to dope single-walled carbon nanotubes and graphene with sulphar. Chem. Phys. Chem. 10, 715 (2009).
69. Shao, Y.Y., Zhang, S., Engelhard, M.H., Li, G.S., Shao, G.C., Wang, Y., Liu, J., Aksay, I.A., and Lin, Y.H.: Nitrogen-doped graphene and its electrochemical applications. J. Mater. Chem. 20, 7491 (2010).
70. Guo, P.P., Xiao, F., Liu, Q., Liu, H.F., Guo, Y.L., Gong, J.R., Wang, S., and Liu, Y.Q.: One-pot microbial method to synthesize dual-doped graphene and its use as high-performance electrocatalyst. Sci. Rep. 3, 3499 (2013).
71. Kumar, B., Min, K., Bashirzadeh, M., Barati Farimani, A., Bae, M.H., Estrada, D., Kim, Y.D., Yasaei, P., Park, Y.D., Pop, E., Aluru, N.R., and Salehi-Khojin, A.: The role of external defects in chemical sensing of graphene field-effect transistors. Nano Lett. 13, 1962 (2013).
72. Jeong, H.Y., Lee, D.S., Choi, H.K., Lee, D.H., Kim, J.E., Lee, J.Y., Lee, W.J., Kim, S.O., and Choi, S.Y.: Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films. Appl. Phys. Lett. 96, 213105 (2010).
73. Yu, K.H., Wang, P.X., Lu, G.H., Chen, K.H., Bo, Z., and Chen, J.H.: Patterning vertically oriented graphene sheets for nanodevice applications. J. Phys. Chem. Lett. 2, 537 (2011).
74. Shang, N.G., Papakonstantinou, P., McMullan, M., Chu, M., Stamboulis, A., Potenza, A., Dhesi, S.S., and Marchetto, H.: Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater. 18, 3506 (2008).
75. Ortiz-Medina, J., López-Urías, F., Terrones, H., Rodríguez-Macías, F.J., Endo, M., and Terrones, M.: Differential response of doped/defective graphene and dopamine to electric fields: A density functional theory study. J. Phys. Chem. C 119, 13972 (2015).
76. Cazorla, C.: Ab initio study of the binding of collagen amino acids to graphene and A-doped (A = H, Ca) graphene. Thin Sold Films 518, 6951 (2010).
77. Tang, Y.B., Yin, L.C., Yang, Y., Bo, X.H., Cao, Y.L., Wang, H.E., Zhang, W.J., Bello, I., Lee, S.T., Cheng, H.M., and Lee, Ch.S.: Tunable band gaps and p-type transport properties of boron-doped graphenes by controllable ion doping using reactive microwave plasma. ACS Nano 6(3), 1970 (2012).
78. Parra, C., Montero-Silva, F., Henríquez, R., Flores, M., Garín, C., Ramírez, C., Moreno, M., Correa, J., Seeger, M., and Häberle, P.: Suppressing bacterial interaction with copper surfaces through graphene and hexagonal-boron nitride coatings. ACS Appl. Mater. Interfaces 7(12), 6430 (2015).
79. Gao, T., Song, X., Du, H., Nie, Y., Chen, Y., Ji, Q., Sun, J., Yang, Y., and Liu, Y.Z.Z.: Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures. Nat. Commun. 6, 6835 (2015).
80. Xue, Y., Liu, Q., He, G., Xu, K., Jiang, L., Hu, X., and Hu, J.: Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets. Nanoscale Res. Lett. 8, 49 (2013).
81. Wang, J., Zhao, R., Liu, Z., and Liu, Z.: Widely tunable carrier mobility of boron nitride-embedded graphene. Small 9, 1373 (2013).
82. Karamanis, P. and Pouchan, C.: Electric property variations in nanosized hexagonal boron nitride/graphene hybrids. J. Phys. Chem. C 119(21), 11872 (2015).
83. Guo, Y. and Guo, W.: Insulating to metallic transition of an oxidized boron nitride nanosheet coating by tuning surface oxygen adsorption. Nanoscale 6, 3731 (2014).
84. Ponomarenko, L.A., Geim, A.K., Zhukov, A.A., Jalil, R., Morozov, S.V., Novoselov, K.S., Grigorieva, I.V., Hill, E.H., Cheianov, V.V., Falko, V.I., Watanabe, K., Taniguchi, T., and Gorbachev, R.V.: Tunable metal–insulator transition in double-layer graphene heterostructures. Nat. Phys. 7, 958 (2011).
85. Feng, P., Li, E.Y., Sajjad, M., Aldalbahi, A., and Chu, J.: Boron nitride nanosheets and their electrical tunneling effect. Sci. Adv. Mater. 7(7), 1326 (2015).
86. Cai, Q., Li, L.H., Yu, Y., Liu, Y., Huang, S., Chen, Y., Watanabe, K., and Taniguchi, T.: Boron nitride nanosheets as improved and reusable substrates for gold nanoparticles enabled surface enhanced Raman spectroscopy. Phys. Chem. Chem. Phys. 17, 7761 (2015).
87. Hirai, H., Tsuchiya, H., Kamakura, Y., Mori, N., and Ogawa, M.: Electron mobility calculation for graphene on substrates. J. Appl. Phys. 116, 083703 (2014).
88. Wang, J., Zhao, R., Yang, M., Liu, Z., and Liu, Z.: Inverse relationship between carrier mobility and bandgap in graphene. J. Chem. Phys. 138, 084701 (2013).
89. Liu, W., Krämer, S., Sarkar, D., Li, H., Ajayan, P.M., and Banerjee, K.: Controllable and rapid synthesis of high-quality and large-area bernal stacked bilayer graphene using chemical vapor deposition. Chem. Mater. 26(2), 907 (2014).
90. Ghoshdastider, U., Rongliang, W., Trzaskowskib, B., Mlynarczykb, K., Misztab, P., Gurusaran, M., Viswanathan, S., Renugopalakrishn, V., and Filipek, S.: Molecular effects of encapsulation of glucose oxidase dimer by graphene. RSC Adv. 5, 13570 (2015).
91. Viswanathan, S., Narayanan, T.N., Aran, K., Fink, K.D., Paredes, J., Ajayan, P.M., Filipek, S., Miszta, P., Tekin, H.C., Inci, F., Demirci, U., Li, P., Bolotin, K.I., Liepmann, D., and Renugopalakrishanan, V.: Graphene–protein field effect biosensors: Glucose sensing. Mater. Today 18(9) 513 (2015).
92. Sarkar, D., Liu, W., Xie, X., Anselmo, A., Mitragotri, S., and Banerjee, K.: MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8(4), 3992 (2014).
93. Zhou, R.: Modeling of Nanotoxicity—Molecular Interaction of Nanomaterials with Biomachines (Springer International Publishing: Switzerland, 2015); p. 127.
94. Zhou, L., He, B., Yang, Y., and He, Y.: Facile approach to surface functionalized MoS2 nanosheets. RSC Adv. 4, 32570 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 38
Total number of PDF views: 119 *
Loading metrics...

Abstract views

Total abstract views: 501 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd May 2018. This data will be updated every 24 hours.