Skip to main content
×
Home
    • Aa
    • Aa

Engineering materials properties in codimension > 0

  • Paulo S. Branicio (a1), Mark H. Jhon (a1) and David J. Srolovitz (a1)
  • DOI: http://dx.doi.org/10.1557/jmr.2011.306
  • Published online: 26 October 2011
Abstract
Abstract

When thin nanomaterials spontaneously deform into nonflat geometries (e.g., nanorods into nanohelices, thin sheets into ruffled forms), their properties may change by orders of magnitude. We discuss this phenomenon in terms of a formal mathematical concept: codimension c = Dd, the difference between the dimensionality of space D, and that of the object d. We use several independent examples such as the edge stress of graphene nanoribbons, the elastic moduli of nanowires, and the thermal expansion of a modified bead-chain model to demonstrate how this framework can be used to generically understand some nanomaterial properties and how these properties can be engineered by using mechanical constraints to manipulate the codimension of the corresponding structure.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: srol@ihpc.a-star.edu.sg
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.S. Iijima : Helical microtubules of graphitic carbon. Nature 354, 56 (1991).

2.H. Dai : Carbon nanotubes: Synthesis, integration, and properties. Acc. Chem. Res. 35, 1035 (2002).

3.X. Duan and C.M. Lieber : General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298 (2000).

4.Y. Wu , J. Xiang , C. Yang , W. Lu , and C.M. Lieber : Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430, 61 (2004).

5.A.K. Geim and K.S. Novoselov : The rise of graphene. Nat. Mater. 6, 183191 (2007).

6.X.Y. Kong and Z.L. Wang : Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 3, 16251631 (2003).

7.Z.W. Pan , Z.R. Dai , and Z.L. Wang : Nanobelts of semiconducting oxides. Science 291, 19471949 (2001).

8.K.V. Bets and B.I. Yakobson : Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons. Nano Res. 2, 161166 (2009).

9.J.M. Garcia-Ruiz , E. Melero-Garcia , and S.T. Hyde : Morphogenesis of self-assembled nanocrystalline materials of barium carbonate and silica. Science 323, 362365 (2009).

10.M.H. Huang , C. Boone , M. Roberts , D.E. Savage , M.G. Lagally , N. Shaji , H. Qin , R. Blick , J.A. Nairn , and F. Liu : Nanomechanical architecture of strained bilayer thin films: From design principles to experimental fabrication. Adv. Mater. 17, 28602864 (2005).

11.L. Zhang , E. Deckhardt , A. Weber , C. Schonenberger , and D. Grutzmacher : Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts. Nanotechnology 16, 655663 (2005).

12.M. Hazewinkel , Ed.: Encyclopaedia of Mathematics; Springer: New York; 1995.

14.R. LeSar , R. Najafabadi , and D.J. Srolovitz : Thermodynamics of solid and liquid embedded-atom-method metals: A variational study. J. Chem. Phys. 94, 50905097 (1991).

15.G.A. Mansoori and F.B. Canfield : Variational approach to melting. II. J. Chem. Phys. 51, 49674972 (1969).

16.J. Steinmetz , S. Kwon , H.J. Lee , E. Abou-Hamad , R. Almairac , C. Goze-Bac , H. Kim , and Y.W. Park : Polymerization of conducting polymers inside carbon nanotubes. Chem. Phys. Lett. 431, 139144 (2006).

17.J. Steinmetz , H.J. Lee , S. Kwon , D.S. Lee , C. Goze-Bac , E. Abou-Hamad , H. Kim , and Y.W. Park : Routes to the synthesis of carbon nanotube–polyacetylene composites by Ziegler–Natta polymerization of acetylene inside carbon nanotubes. Curr. Appl. Phys. 7, 3941 (2007).

18.D. Nishide , T. Wakabayashi , T. Sugai , R. Kitaura , H. Kataura , Y. Achiba , and H. Shinohara : Raman spectroscopy of size-selected linear polyyne molecules C2NH2 (n = 46) encapsulated in single-wall carbon nanotubes. J. Phys. Chem. C 111, 51785183 (2007).

19.A.V. Bazilevsky , K. Sun , A.L. Yarin , and C.M. Megaridis : Selective intercalation of polymers in carbon nanotubes. Langmuir 23, 74517455 (2007).

20.G.C. McIntosh , D. Tománek , and Y.W. Park : Energetics and electronic structure of a polyacetylene chain contained in a carbon nanotube. Phys. Rev. B 67, 125419 (2003).

21.W. Bao , F. Miao , Z. Chen , H. Zhang , W. Jang , C. Dames , and C.N. Lau : Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat. Nanotechnol. 4, 562566 (2009).

22.J.W. Jiang , J.S. Wang , and B.W. Li : Thermal expansion in single-walled carbon nanotubes and graphene: Nonequilibrium Green’s function approach. Phys. Rev. B 80, 205429 (2009).

23.D.Q. Zhang , A. Alkhateeb , H.M. Han , H. Mahmood , D.N. McIlroy , and M.G. Norton : Silicon carbide nanosprings. Nano Lett. 3, 983987 (2003).

27.M.H. Gass , U. Bangert , A.L. Bleloch , P. Wang , R.R. Nair , and A.K. Geim : Free-standing graphene at atomic resolution. Nat. Nanotechnol. 3, 676681 (2008).

28.L. Tapaszto , G. Dobrik , P. Lambin , and L.P. Biro : Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 3, 397401 (2008).

29.A.K. Geim : Graphene: Status and prospects. Science 324, 15301534 (2009).

30.S. Jun : Density-functional study of edge stress in graphene. Phys. Rev. B 78, 073405 (2008).

31.B. Huang , M. Liu , N.H. Su , J. Wu , W.H. Duan , B.L. Gu , and F. Liu : Quantum manifestations of graphene edge stress and edge instability: A first-principles study. Phys. Rev. Lett. 102, 166404 (2009).

32.C.K. Gan and D.J. Srolovitz : Trends in graphene edge properties and flake shapes: A first-principles study. Phys. Rev. B 81, 125445 (2010).

33.V.B. Shenoy , C.D. Reddy , A. Ramasubramaniam , and Y.W. Zhang : Edge-stress-induced warping of graphene sheets and nanoribbons. Phys. Rev. Lett. 101, 245501 (2008).

34.F.G. Rammerstorfer , F.D. Fischer , and N. Friedl : Buckling of free infinite strips under residual stresses and global tension. J. Appl. Mech. 68, 399404 (2001).

35.Z.G. Chen , J. Zou , G. Liu , F. Li , Y. Wang , L. Wang , X.L. Yuan , T. Sekiguchi , H.M. Cheng , and G.Q. Lu : Novel boron nitride hollow nanoribbons. ACS Nano 2, 21832191 (2008).

36.J. Campos-Delgado , J.M. Romo-Herrera , X. Jia , D.A. Cullen , H. Muramatsu , Y.A. Kim , T. Hayashi , Z. Ren , D.J. Smith , Y. Okuno , T. Ohba , H. Kanoh , K. Kaneko , M. Endo , H. Terrones , M.S. Dresselhaus , and M. Terrones : Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nano Lett. 8, 27732778 (2008).

37.P.S. Branicio , C.K. Gan , M.H. Jhon , and D.J. Srolovitz : Properties on the edge: Graphene edge energies, edge stresses, edge warping, and the wulf shape of graphene flakes. Model. Simul. Mater. Sci. Eng. 19, 054002 (2011).

39.Y. Liu , A. Dobrinsky , and B.I. Yakobson : Graphene edge from armchair to zigzag: The origins of nanotube chirality? Phys. Rev. Lett. 105, 235502 (2010).

40.Q. Lu and R. Huang : Excess energy and deformation along free edges of graphene nanoribbons. Phys. Rev. B 81, 155410 (2010).

41.G.H. Lui , L. Liu , K.F. Mak , G.W. Flynn , and T.F. Heinz : Ultraflat graphene. Nature 462, 339341 (2009).

43.I.A. Ovid’ko : Nanodefects in nanostructures. Phil. Mag. Lett. 83, 611620 (2003).

44.M. Terrones , F. Banhart , N. Grobert , J.-C. Charlier , H. Terrones , and P.M. Ajayan : Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett. 89, 075505 (2002).

45.M.Y. Gutkin and I.A. Ovid’ko : Glide of hollow fibers at the bridging stage of fracture in ceramic nanocomposites. Scripta Mater. 59, 414417 (2008).

46.M.Y. Gutkin and I.A. Ovid’ko : Effect of y-junction nanotubes on strengthening of nanocomposites. Scripta Mater. 61, 11491152 (2009).

47.A.G. Shtukenberg , J. Freudenthal , and B. Kahr : Reversible twisting during helical hippuric acid crystal growth. J. Am. Chem. Soc. 132, 93419349 (2010).

48.H. Liang and L. Mahadevan : The shape of a long leaf. Proc. Natl. Acad. Sci. 106, 2204922054 (2009).

49.D.C. Liu and J. Nocedal : On the limited memory BFGS method for large-scale optimization. Math. Program. 45, 503528 (1989).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: