Skip to main content

Enhanced bone regeneration of zirconia-toughened alumina nanocomposites using PA6/HA nanofiber coating via electrospinning

  • Hamid Esfahani (a1), Mahsa Darvishghanbar (a1) and Behzad Farshid (a2)

In this study, the bioactivity and cytocompatibility of electrospun polyamide 6 (PA6)/hydroxyapatite (HA) coating on zirconia-toughened alumina (ZTA) were investigated. Adjusting the PA6/HA ratio to 1.15 (w/w) had a significant role in achieving an appropriate fibrous coating with an average diameter of 120 ± 10 nm and surface porosity of 64.3%. The surface of bare and coated samples was hydrophilic, which promoted bone regeneration. The adhesion test of the PA6/HA mat demonstrated that a cohesive coating was formed on the ZTA via electrospinning. The in vitro bioactivity test of the PA6/HA coating in simulated body fluid (SBF) corroborated the formation of a nanostructured bonelike apatite phase. Cytocompatibility of the samples was evaluated through in vitro osteosarcoma-like cell (MG63) culture assays. The cytotoxicity study showed that the electrospun PA6/HA coating significantly improved cell attachment and spreading. The development of such bioactive, biomedical coatings opens new avenues for bone tissue engineering applications.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.NievethithaSethu, S., Namashivayam, S., Devendran, S., Nagarajan, S., Tsai, W.B., Narashiman, S., Ramachandran, M., and Ambigapathi, M.: Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering. Int. J. Biol. Macromol. 98, 67 (2017).
2.Dziadek, M., Stodolak-Zych, E., and Cholewa-Kowalska, K.: Biodegradable ceramic–polymer composites for biomedical applications: A review. Mater. Sci. Eng., C 71, 1175 (2017).
3.Moncal, K., Heo, D., Godzik, K., Sosnoski, D., Mrowczynski, O., Rizk, E., and Ozbolat, I.: 3D printing of poly(ε-caprolactone)/poly(D,L-lactide-co-glycolide)/hydroxyapatite composite constructs for bone tissue engineering. J. Mater. Res. 33, 1972 (2018).
4.Mitic, Z., Stolić, A., Stojanovic, S., Najman, S., Ignjatovic, N., and MiroslavTrajanović, G.N.: Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: A review. Mater. Sci. Eng., C 79, 930 (2017).
5.Basu, D. and Sarkar, B.: Toughness determination of zirconia toughened alumina ceramics from growth of indentation-induced cracks. J. Mater. Res. 11, 3057 (1996).
6.Kurtz, S.M., Arnholt, S.K.C., Huet, R., Ueno, M., and Walter, W.L.: Advances in zirconia toughened alumina biomaterials for total joint replacement. J. Mech. Behav. Biomed. Mater. 31, 107 (2014).
7.Gautam, C., Joyner, J., Gautam, A., Rao, J., and Vajtai, R.: Zirconia based dental ceramics: Structure, mechanical properties, biocompatibility and applications. Dalton Trans. 45, 19194 (2016).
8.Sequeira, S., Fernandes, M.H., Neves, N., and Almeida, M.M.: Development and characterization of zirconia–alumina composites for orthopedic implants. Ceram. Int. 43, 693 (2017).
9.Ercan, B. and Webster, T.J.: Better tissue engineering materials through the use of nanotechnology. Adv. Sci. Technol. 53, 58 (2006).
10.Esfahani, H., Nemati, A., and Salahi, E.: Synthesis and characterization of β-tricalcium phosphate coating on zirconia toughened alumina by biomimetic method. Adv. Appl. Ceram. 112, 140 (2013).
11.Nandakumar, A., Yang, L., Habibovic, P., and van Blitterswijk, C.: Calcium phosphate coated electrospun fiber matrices as scaffolds for bone tissue engineering. Langmuir 26, 7380 (2010).
12.Sweth, M., Sahithi, K., Moorthi, A., Srinivasan, N., Ramasamy, K., and Selvamurugan, N.: Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int. J. Biol. Macromol. 47, 1 (2010).
13.Gomez-Morales, J., Iafisco, M., Delgado-López, J.M., Sarda, S., and Drouet, C.: Progress on the preparation of nanocrystalline apatites and surface characterization: Overview of fundamental and applied aspects. Prog. Cryst. Growth Charact. 59, 1 (2013).
14.Shojai, M.S., Khorasani, M.T., and Jamshidi, A.: 3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications. Mater. Sci. Eng., C 49, 835 (2015).
15.Xiong, Y., Ren, C., Zhang, B., Yang, H., Lang, Y., Min, L., Zhang, W., Pei, F., Yan, Y., Li, H., and Mo, A.: Analyzing the behavior of a porous nano-hydroxyapatite/polyamide 66 (n-HA/PA66) composite for healing of bone defects. Int. J. Nanomed. 9, 485 (2014).
16.Prasad S, S.,Ratha, I., Adarsh, T., Anand, A., Kumar Sinha, P., Diwan, P., Annapurna, K., and Biswas, K.: In vitro bioactivity and antibacterial properties of bismuth oxide modified bioactive glasses. J. Mater. Res. 33, 178 (2018).
17.Esfahani, H., Prabhakaran, M.P., Salahi, E., Tayebifard, A., Keyanpour-Rad, M., Rahimipour, M.R., and Ramakrishna, S.: Protein adsorption on electrospun zinc doped hydroxyapatite containing nylon 6 membrane: Kinetics and isotherm. J. Colloid Interface Sci. 443, 143 (2015).
18.Yang, H., Xia, K., Wang, T., Niu, J., Song, Y., Xiong, Z., Zheng, K., Wei, S., and Lu, W.: Growth: In vitro biodegradation and cytocompatibility properties of nano-hydroxyapatite coatings on biodegradable magnesium alloys. J. Alloys Compd. 672, 366 (2016).
19.Ratha, I., Anand, A., Chatterjee, S., Kundu, B., and Suresh Kumar, G.: Preliminary study on effect of nano-hydroxyapatite and mesoporous bioactive glass on DNA. J. Mater. Res. 33, 1592 (2018).
20.Latifi, S.M., Fathi, M.H., and Golozar, M.A.: Preparation and characterisation of bioactive hydroxyapatite–silica composite nanopowders via sol–gel method for medical applications. Adv. Appl. Ceram. 110, 8 (2011).
21.Smitha, S., Shajesh, P., Mukundan, P., and Warrier, K.: Sol–gel synthesis of biocompatible silica–chitosan hybrids and hydrophobic coatings. J. Mater. Res. 23, 2053 (2008).
22.Nieh, T.G., Jankowski, A.F., and Koike, J.: Processing and characterization of hydroxyapatite coatings on titanium produced by magnetron sputtering. J. Mater. Res. 16, 3238 (2011).
23.Hidalgo-Robatto, B.M., Lopez-Alvarez, M., Azevedo, A.S., Dorado, J., Serra, J., Azevedo, N.F., and Gonzalez, P.: Pulsed laser deposition of copper and zinc doped hydroxyapatite coatings for biomedical applications. Surf. Coat. Technol. 333, 168 (2018).
24.Xie, J., Peng, C., Zhao, Q., Wang, X., Yuan, H., Yang, L., Li, K., Lou, X., and Zhang, Y.: Osteogenic differentiation and bone regeneration of iPSC-MSCs supported by a biomimetic nanofibrous scaffold. ActaBiomater. 29, 365 (2016).
25.Vahabzadeh, S., Roy, M., Bandyopadhyay, A., and Bose, S.: Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications. ActaBiomater. 17, 47 (2015).
26.Faridi-Majidi, R., Nezafati, N., Pazouki, M., and Hesaraki, S.: The effect of synthesis parameters on morphology and diameter of electrospun hydroxyapatite nanofibers. J. Australas. Ceram. Soc. 53, 225 (2017).
27.Jing, X., Mi, H.Y., Salick, M.R., Cordie, T., McNulty, J., Peng, X-F., and Turng, L.S.: In vitro evaluations of electrospun nanofiber scaffolds composed of poly(ε-caprolactone) and polyethylenimine. J. Mater. Res. 30, 1808 (2015).
28.Kokubo, T. and Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907 (2006).
29.Allo, B.A., Costa, D.O., Dixon, S.J., Mequanint, K., and Rizkalla, A.S.: Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration. J. Funct. Biomater. 3, 432 (2012).
30.Brydone, A.S., Meek, D., and Maclaine, S.: Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc. Inst. Mech. Eng., Part H 224, 1329 (2010).
31.Ben-Arfa, B.A.E., Miranda Salvado, I.M., Ferreira, J.M.F., and Pullar, R.C.: Novel route for rapid sol–gel synthesis of hydroxyapatite, avoiding ageing and using fast drying with a 50-fold to 200-fold reduction in process time. Mater. Sci. Eng., C 70, 796 (2017).
32.Monmaturapoj, N.: Nano-size hydroxyapatite powders preparation by wet-chemical precipitation route. J. Met., Mater. Miner. 18, 15 (2008).
33.Salehi, S. and Fathi, M.H.: Fabrication and characterization of sol–gel derived hydroxyapatite/zirconia composite nanopowders with various yttria contents. Ceram. Int. 36, 1659 (2010).
34.Shalabi, M.M., Gortemaker, A., Van’t Hof, M.A., Jansen, J.A., and Creugers, N.H.: Implant surface roughness and bone healing: A systematic review. J. Dent. Res. 85, 496 (2006).
35.Esfahani, H., Jose, R., and Ramakrishna, S.: Electrospun ceramic nanofiber mats today: Synthesis, properties, and applications. Materials 10, 1238 (2017).
36.Abdal-hay, A., Khalil, K.A., Al-Jassir, F.F., and Gamal-Eldeen, A.M.: Biocompatibility properties of polyamide 6/PCL blends composite textile scaffold using EA.hy926 human endothelial cells. Biomed. Mater. 12, 10 (2017).
37.Ateş, S., Baran, E., and Yazıcı, B.: The nanoporous anodic alumina oxide formed by two-step anodization. Thin Solid Films 648, 94 (2018).
38.Redon, R., Vazquez-Olmos, A., Mata-Zamora, M.E., Ordonez-Medrano, A., Rivera-Torres, F., and Saniger, J.M.: Contact angle studies on anodic porous alumina. J. Colloid Interface Sci. 287, 664 (2005).
39.Santos, D., Silva, D.M., Gomes, P.S., Fernandes, M.H., Santos, J.D., and Sencadas, V.: Multifunctional PLLA-ceramic fiber membranes for bone regeneration applications. J. Colloid Interface Sci. 504, 101 (2017).
40.Aly, I.H.M., Mohammed, L.A.A., Al-Meer, S., Elsaid, K., and Barakat, N.A.M.: Preparation and characterization of wollastonite/titanium oxide nanofiber bioceramic composite as a future implant material. Ceram. Int. 42, 11525 (2016).
41.Algellai, A.A., Tomić, N., Vuksanović, M.M., Dojčinović, M., Volkov-Husović, T., Radojević, V., and Jančić Heinemann, R.: Adhesion testing of composites based on Bis-GMA/TEGDMA monomers reinforced with alumina based fillers on brass substrate. Composites, Part B 140, 164 (2018).
42.Chen, P.: A preliminary discourse on adhesion of nanofibers derived from electrospun polymers. PhD dissertation, University of Akron, Akron (2013). Available at:
43.Chlanda, A., Kijeńska, E., Rinoldi, C., Tarnowski, M., Wierzchoń, T., and Swieszkowski, W.: Structure and physico-mechanical properties of low temperature plasma treated electrospun nanofibrous scaffolds examined with atomic force microscopy. Micron 107, 79 (2018).
44.Chapman, B.N.: Thin-film adhesion. J. Vac. Sci. Technol. 11, 106 (1974).
45.Hughes-Brittain, N.F., Qiu, L., Picot, O.T., Wang, W., Cees, T.P., and Bastiaansen, W.M.: Surface texturing of electrospun fibres by photoembossing using pulsed laser interference holography and its effects on endothelial cell adhesion. Polymer 15, 40 (2017).
46.ISO 26443:2008: Fine ceramics (advanced ceramics, advanced technical ceramics) rockwell indentation test for evaluation of adhesion of ceramic coatings.
47.Burg, K.J.L., Porter, S., and Kellam, J.F.: Biomaterial developments for bone tissue engineering. Biomaterials 21, 2347 (2000).
48.Wang, S., Hu, F., Li, J., Zhang, S., Shen, M., Huang, M., and Shi, X.: Design of electrospun nanofibrous mats for osteogenic differentiation of mesenchymal stem cells. Nanomed. Nanotechnol. Biol. Med. 14, 2505 (2017).
49.Liu, Q., Li, W., Cao, L., Wang, J., Qu, Y., Wang, X., Qiu, R., Di, X., Wang, Z., and Liang, B.: Response of MG63 osteoblast cells to surface modification of Ti–6Al–4V implant alloy by laser interference lithography. J. Bionic Eng. 14, 448 (2017).
50.Huang, Y.C., Hsiao, P.C., and Chai, H.J.: Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells. Ceram. Int. 37, 1825 (2011).
51.Begam, H., Kundu, B., Chanda, A., and Nandi, S.K.: MG63 osteoblast cell response on Zn doped hydroxyapatite (HAp) with various surface features. Ceram. Int. 43, 3752 (2017).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed