Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-20T10:21:05.425Z Has data issue: false hasContentIssue false

Enhanced photocatalytic activity of TiO2–niobate nanosheet composites

Published online by Cambridge University Press:  19 November 2012

Jian Liu
Affiliation:
Department of Materials Science & Engineering, Kazuo Inamori School of Engineering, Alfred University, Alfred, New York 14802
Eric J. Nichols
Affiliation:
Department of Materials Science & Engineering, Kazuo Inamori School of Engineering, Alfred University, Alfred, New York 14802
Jane Howe
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Scott T. Misture*
Affiliation:
Department of Materials Science & Engineering, Kazuo Inamori School of Engineering, Alfred University, Alfred, New York 14802
*
a)Address all correspondence to this author. e-mail: misture@alfred.edu
Get access

Abstract

Protonated niobate nanosheets, H1.8Bi0.2CaNaNb3O10 (BCNN), were synthesized using a new organic-free simultaneous ion exchange and exfoliation process from the Aurivillius phase Bi2CaNaNb3O12. Nanosheet/TiO2 composites were prepared by thermal treatment of physical mixtures of commercially available anatase TiO2 and the nanosheet suspension. Methylene blue (MB) dye degradation studies for the composite show a clear correlation between the MB surface adsorption and the degradation rate. The composite exhibits strongly enhanced photocatalytic activity as the calcination temperature increases, suggesting the possibility of charge transfer at the BCNN–TiO2 interface and the existence of Nb5+ and O2−acid–base pairs. Both phenomena are attributed to the processing approach, which includes topochemical dehydration of the BCNN nanosheets during heat treatment.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 3738 (1972).CrossRefGoogle Scholar
Linsebigler, A.L., Lu, G.Q., and Yates, J.T.: Photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results. Chem. Rev. 95(3), 735758 (1995).CrossRefGoogle Scholar
Chen, X. and Mao, S.S.: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107(7), 28912959 (2007).CrossRefGoogle ScholarPubMed
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528), 269271 (2001).CrossRefGoogle ScholarPubMed
Zhu, W., Qiu, X., Iancu, V., Chen, X-Q., Pan, H., Wang, W., Dimitrijevic, N.M., Rajh, T., Meyer, H.M. III, Paranthaman, M.P., Stocks, G.M., Weitering, H.H., Gu, B., Eres, G., and Zhang, Z.: Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity. Phys. Rev. Lett. 103(22), 226401 (2009).CrossRefGoogle ScholarPubMed
Carneiro, J.T., Savenije, T.J., Moulijn, J.A., and Mul, G.: How phase composition influences optoelectronic and photocatalytic properties of TiO2. J. Phys. Chem. C 115(5), 22112217 (2011).CrossRefGoogle Scholar
Salvador, P.: Hole diffusion length in n-TiO2 single crystals and sintered electrodes - photoelectrochemical determination and comparative analysis. J. Appl. Phys. 55(8), 29772985 (1984).CrossRefGoogle Scholar
Wang, H., You, T., Shi, W., Li, J., and Guo, L.: Au/TiO2/Au as a plasmonic coupling photocatalyst. J. Phys. Chem. C 116(10), 64906494 (2012).CrossRefGoogle Scholar
Pearson, A., Jani, H., Kalantar-Zadeh, K., Bhargava, S.K., and Bansal, V.: Gold nanoparticle-decorated Keggin ions/TiO2 photo-cocatalyst for improved solar light photocatalysis. Langmuir 27(11), 66616667 (2011).CrossRefGoogle Scholar
Meekins, B.H. and Kamat, P.V.: Role of water oxidation catalyst IrO2 in shuttling photogenerated holes across TiO2 interface. J. Phys. Chem. Lett. 2(18), 23042310 (2011).CrossRefGoogle Scholar
Jang, B. and Zhamu, A.: Processing of nanographene platelets (NGPs) and NGP nanocomposites: A review. J. Mater. Sci. 43(15), 50925101 (2008).CrossRefGoogle Scholar
Zhang, X.Y., Li, H.P., Cui, X.L., and Lin, Y.: Graphene/TiO2 nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J. Mater. Chem. 20(14), 28012806 (2010).CrossRefGoogle Scholar
Zhang, H., Lv, X., Li, Y., Wang, Y., and Li, J.: P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380386 (2009).CrossRefGoogle Scholar
Miseki, Y., Kato, H., and Kudo, A.: Water splitting into H2 and O2 over niobate and titanate photocatalysts with (111) plane-type layered perovskite structure. Energy Environ. Sci. 2(3), 306314 (2009).CrossRefGoogle Scholar
Ma, R.Z. and Sasaki, T.: Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearing functional crystallites. Adv. Mater. 22(45), 50825104 (2010).CrossRefGoogle ScholarPubMed
Townsend, T.K., Sabio, E.M., Browning, N.D., and Osterloh, F.E.: Improved niobate nanoscroll photocatalysts for partial water splitting. ChemSusChem 4, 185190 (2011).CrossRefGoogle ScholarPubMed
Zhou, H., Sabio, E.M., Townsend, T.K., Fan, T.X., Zhang, D., and Osterloh, F.E.: Assembly of core-shell structures for photocatalytic hydrogen evolution from aqueous methanol. Chem. Mater. 22(11), 33623368 (2010).CrossRefGoogle Scholar
Allen, M.R., Thibert, A., Sabio, E.M., Browning, N.D., Larsen, D.S., and Osterloh, F.E.: Evolution of physical and photocatalytic properties in the layered titanates A(2)Ti(4)O(9) (A = K, H) and in nanosheets derived by chemical exfoliation. Chem. Mater. 22(3), 12201228 (2010).CrossRefGoogle Scholar
Centi, G. and Perathoner, S.: Catalysis by layered materials: A review. Microporous Mesoporous Mater. 107(1–2), 315 (2008).CrossRefGoogle Scholar
Nakato, T., Yamada, Y., Nakamura, M., and Takahashi, A.: Photoinduced electron accumulation in colloidally dispersed wide band gap semiconductor nanosheets. J. Colloid Interface Sci. 354(1), 3844 (2011).CrossRefGoogle ScholarPubMed
Gao, X. and Wachs, I.E.: Investigation of surface structures of supported vanadium oxide catalysts by UV−vis−NIR diffuse reflectance spectroscopy. J. Phys. Chem. B 104, 1261 (2000).CrossRefGoogle Scholar
Barton, D.G., Shtein, M., Wilson, R.D., Soled, S.L., and Iglesia, E.: Structure and electronic properties of solid acids based on tungsten oxide nanostructures. J. Phys. Chem. B 103, 630 (1999).CrossRefGoogle Scholar
Sugimoto, W., Shirata, M., Kuroda, K., and Sugahara, Y.: Conversion of Aurivillius phases Bi(2)ANaNb(3)O(12) (A = Sr or Ca) into the protonated forms of layered perovskite via acid treatment. Chem. Mater. 14(7), 29462952 (2002).CrossRefGoogle Scholar
Gopalakrishnan, J. and Bhat, V.: A2Ln2Ti3O10 (A = potassium or rubidium; Ln = lanthanum or rare earth): A new series of layered perovskites exhibiting ion exchange. Inorg. Chem. 26(26), 42994301 (1987).CrossRefGoogle Scholar
Ollivier, P.J. and Mallouk, T.E.: A “Chimie Douce” synthesis of perovskite-type SrTa2O6 and SrTa2-xNbxO61. Chem. Mater. 10(10), 25852587 (1998).CrossRefGoogle Scholar
Fang, M.M., Kim, C.H., and Mallouk, T.E.: Dielectric properties of the lamellar niobates and titanoniobates AM(2)Nb(3)O(10) and ATiNbO(5) (A = H, K, M = Ca, Pb), and their condensation products Ca4Nb6O19 and Ti2Nb2O9. Chem. Mater. 11(6), 15191525 (1999).CrossRefGoogle Scholar
Poterala, S.F., Chang, Y., Clark, T., Meyer, R.J., and Messing, G.L.: Mechanistic interpretation of the Aurivillius to perovskite topochemical microcrystal conversion process. Chem. Mater. 22(6), 20612068 (2010).CrossRefGoogle Scholar
Vittadini, A., Selloni, A., Rotzinger, F.P., and Grätzel, M.: Structure and energetics of water adsorbed at TiO2 anatase \(101\) and \(001\) surfaces. Phys. Rev. Lett. 81(14), 29542957 (1998).CrossRefGoogle Scholar
Arrouvel, C., Digne, M., Breysse, M., Toulhoat, H., and Raybaud, P.: Effects of morphology on surface hydroxyl concentration: A DFT comparison of anatase–TiO2 and γ-alumina catalytic supports. J. Catal. 222(1), 152166 (2004).CrossRefGoogle Scholar
Uchida, S., Yamamoto, Y., Fujishiro, Y., Watanabe, A., Ito, O., and Sato, T.: Intercalation of titanium oxide in layered H2Ti4O9 and H4Nb6O17 and photocatalytic water cleavage with H2Ti4O9/(TiO2, Pt) and H4Nb6O17/(TiO2, Pt) nanocomposites. J. Chem. Soc., Faraday Trans. 93(17), 32293234 (1997).CrossRefGoogle Scholar
Du, P., Bueno-Lopez, A., Verbaas, M., Almeida, A.R., Makkee, M., Moulijn, J.A., and Mul, G.: The effect of surface OH-population on the photocatalytic activity of rare earth-doped P25-TiO(2) in methylene blue degradation. J. Catal. 260(1), 7580 (2008).CrossRefGoogle Scholar
Minella, M., Faga, M.G., Maurino, V., Minero, C., Pelizzetti, E., Coluccia, S., and Martra, G.: Effect of fluorination on the surface properties of titania P25 powder: An FTIR study. Langmuir 26(4), 25212527 (2009).CrossRefGoogle Scholar
Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., and Herrmann, J.M.: Photocatalytic degradation pathway of methylene blue in water. Appl. Catal., B 31(2), 145157 (2001).CrossRefGoogle Scholar
Martra, G.: Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: Relationships between surface morphology and chemical behaviour. Appl. Catal., A 200(1–2), 275285 (2000).CrossRefGoogle Scholar
Nichols, E.J., Shi, J., Huq, A., Voge, S.C., and Misture, S.T.: Controlling structure distortions in 3-layer Aurivillius oxides. J. Solid State Chem. 197, 475482 (2013).CrossRefGoogle Scholar
Burbure, N.V., Salvador, P.A., and Rohrer, G.S.: Photochemical reactivity of titania films on BaTiO3 substrates: Influence of titania phase and orientation. Chem. Mater. 22(21), 58315837 (2010).CrossRefGoogle Scholar
Pankove, J.I.: Optical Processes in Semiconductors (Dover, New York, NY, 1975).Google Scholar