Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 35
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Kaptay, G. Janczak-Rusch, J. and Jeurgens, L. P. H. 2016. Melting Point Depression and Fast Diffusion in Nanostructured Brazing Fillers Confined Between Barrier Nanolayers. Journal of Materials Engineering and Performance,


    Šesták, Jaroslav 2015. Kinetic phase diagrams as a consequence of sudden changing temperature or particle size. Journal of Thermal Analysis and Calorimetry, Vol. 120, Issue. 1, p. 129.


    Vollath, Dieter and Fischer, Franz Dieter 2014. Metal Nanopowders.


    Wang, Lianwen 2013. Vacancy formationandsquashing during surface melting and the size effect on surface-induced melting of metals. Philosophical Magazine, Vol. 93, Issue. 27, p. 3648.


    Li, Yejun Qi, Weihong Li, Yuan Janssens, Ewald and Huang, Baiyun 2012. Modeling the Size-Dependent Solid–Solid Phase Transition Temperature of Cu2S Nanosolids. The Journal of Physical Chemistry C, Vol. 116, Issue. 17, p. 9800.


    Wang, Chaoming Hong, Yan Zhang, Minghui Hossain, Mainul Luo, Yang and Su, Ming 2012. Thermal fingerprint of silica encapsulated phase change nanoparticles. Nanoscale, Vol. 4, Issue. 10, p. 3237.


    Hu, Shengliang Yang, Jinlong Liu, Wei Dong, Yingge Cao, Shirui and Liu, Jun 2011. Prediction of formation of cubic boron nitride by construction of temperature–pressure phase diagram at the nanoscale. Journal of Solid State Chemistry, Vol. 184, Issue. 7, p. 1598.


    Schebarchov, D. and Hendy, S. C. 2011. Effects of epitaxial strain on the melting of supported nickel nanoparticles. Physical Review B, Vol. 84, Issue. 8,


    Sar, Dillip Kumar and Nanda, Karuna Kar 2010. Melting and superheating of nanowires—a nanotube approach. Nanotechnology, Vol. 21, Issue. 20, p. 205701.


    Nanda, K. K. 2009. Size-dependent melting of nanoparticles: Hundred years of thermodynamic model. Pramana, Vol. 72, Issue. 4, p. 617.


    Ganguli, Dibyendu 2008. Size Effect in Melting: A Historical Overview. Transactions of the Indian Ceramic Society, Vol. 67, Issue. 2, p. 49.


    Ruffino, F. Grimaldi, M. G. Giannazzo, F. Roccaforte, F. and Raineri, V. 2008. Thermodynamic Properties of Supported and Embedded Metallic Nanocrystals: Gold on/in SiO2. Nanoscale Research Letters, Vol. 3, Issue. 11, p. 454.


    Audoit, Guillaume Kulkarni, Jaideep S. Morris, Michael A. and Holmes, Justin D. 2007. Size dependent thermal properties of embedded crystalline germanium nanowires. Journal of Materials Chemistry, Vol. 17, Issue. 16, p. 1608.


    Boucharat, N. Rösner, H. and Wilde, G. 2007. Melting behavior of nanosized particles embedded in an Al-rich metallic glass. Materials Science and Engineering: A, Vol. 449-451, p. 640.


    Mei, Q.S. and Lu, K. 2007. Melting and superheating of crystalline solids: From bulk to nanocrystals. Progress in Materials Science, Vol. 52, Issue. 8, p. 1175.


    Sun, Chang Q. 2007. Size dependence of nanostructures: Impact of bond order deficiency. Progress in Solid State Chemistry, Vol. 35, Issue. 1, p. 1.


    Lopeandía, A F Rodríguez-Viejo, J Chacón, M Clavaguera-Mora, M T and Muñoz, F J 2006. Heat transfer in symmetric U-shaped microreactors for thin film calorimetry. Journal of Micromechanics and Microengineering, Vol. 16, Issue. 5, p. 965.


    Qi, W.H. and Wang, M.P. 2005. Size- and shape-dependent superheating of nanoparticles embedded in a matrix. Materials Letters, Vol. 59, Issue. 18, p. 2262.


    Dahmen ¶, U. Hagège, S. Faudot, F. Radetic, T. and Johnson, E. 2004. Observations of interface premelting at grain-boundary precipitates of Pb in Al. Philosophical Magazine, Vol. 84, Issue. 25-26, p. 2651.


    Xie, D Wang, M P and Qi, W H 2004. A simplified model to calculate the surface-to-volume atomic ratio dependent cohesive energy of nanocrystals. Journal of Physics: Condensed Matter, Vol. 16, Issue. 36, p. L401.


    ×

Epitaxial dependence of the melting behavior of In nanoparticles embedded in Al matrices

  • H. W. Sheng (a1), G. Ren (a2), L. M. Peng (a2), Z. Q. Hu (a3) and K. Lu (a4)
  • DOI: http://dx.doi.org/10.1557/JMR.1997.0019
  • Published online: 01 January 2011
Abstract

Nanometer-sized In particles (5−45 nm) embedded in the Al matrix were prepared by using melt-spinning and ball-milling techniques. Different crystallographic orientationships between In nanoparticles and the Al matrix were constructed by these two approaches. Melting behavior of the In particles were investigated by means of differential scanning calorimetry (DSC). It was found that the epitaxially oriented In nanoparticles (with the Al matrix) in the melt-spun sample were superheated to about 0−38 °C, whereas the randomly oriented In particles in the ball-milled sample melted below its equilibrium melting point by about 0−22 °C. We suggest that the melting temperature of In nanoparticles can be either enhanced or depressed, depending on the epitaxy between In and the Al matrix.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

3.L. L. Boyer , Phase Trans. 5, 1 (1985), and references therein.

4.G. L. Allen , R. A. Bayles , W. W. Gile , and W. A. Jesser , Thin Solid Films 144, 297 (1986).

5.T. Ben David , Y. Lereah , G. Deutscher , R. Koffman , and P. Cheyssac , Philos. Mag. A 71, 1135 (1995).

6.K. Uenishi , H. Kawaguchi , and K. F. Kobayashi , J. Mater. Sci. 29, 4860 (1994).

7.K. M. Unruh , J. F. Sheehan , T. E. Huber , and C. A. Huber , Nanostr. Mater. 3, 425 (1993).

8.T. Ohashi , K. Kuroda , and H. Saka , Philos. Mag. B 65, 1041 (1992).

9.K. Sasaki and H. Saka , Philos. Mag. A 63, 1207 (1991).

10.H. Saka , Y. Nishikawa , and T. Imura , Philos. Mag. A 57, 895 (1988).

11.D. L. Zhang and B. Cantor , Acta Metall. Mater. 39, 1595 (1991).

12.L. Gråbaek , J. Bohr , E. Johnson , L. Sarholt-Kristensen , and H. H. Andersen , Phys. Rev. Lett. 64, 934 (1990).

13.R. W. Cahn , Nature (London) 323, 668 (1986).

16.H. W. Sheng , G. Ren , L. M. Peng , Z. Q. Hu , and K. Lu , Philos. Mag. Lett. 73, 179 (1996).

17.G. L. Allen , W. W. Gile , and W. A. Jesser , Acta Metall. 28, 1695 (1980).

18.A. K. Malhotra and D. C. Van Aken , Philos. Mag. A 71, 949 (1995).

19.P. R. Couchman and W. A. Jesser , Philos. Mag. 35, 787 (1977).

20.J. Däges , H. Gleiter , and J. H. Perepezko , Phys. Lett. 119, 79 (1986).

21.G. D. T. Spiller , Philos. Mag. 46, 535 (1982).

22.F. G. Shi , J. Mater. Res. 9, 1307 (1994).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×