Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T05:48:18.464Z Has data issue: false hasContentIssue false

Epitaxy in solid-phase thin film reactions: Nucleation-controlled growth of iron silicide nanostructures on Si(001)

Published online by Cambridge University Press:  23 April 2013

György Molnár*
Affiliation:
Department of Microtechnology, Institute of Technical Physics and Materials Science, Research Center for Natural Sciences, HAS, Budapest H-1525, Hungary
*
a)Address all correspondence to this author. e-mail: molnar.gyorgy@ttk.mta.hu
Get access

Abstract

A special type of epitaxial growth appears during solid-phase thin film reactions, where the reaction product grows epitaxially on the substrate. Some metal silicide layers and nanostructures are known to develop such epitaxial structures. In this study, iron silicide was used to study the effect of the growth mode on the epitaxial growth. Strain-induced, self-assembled iron silicide nanostructures were grown on Si(001) substrates by electron gun evaporation of 1.0 nm iron and subsequent annealing at 500–850 °C for 60 min. The growth processes were checked by reflection high-energy electron diffraction, and the formed structures were characterized by scanning electron microscopy and optical microscopy. The iron silicide nanostructures were oriented in square directions epitaxially fitting to the surface of Si(001). The shape and size of the nanostructures depended on the annealing temperature. In some cases, the nanoparticles were arranged in circles. This might be the direct consequence of a nucleation-controlled type transition of iron monosilicide to iron disilicide phase at nanoscale.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bergman, C.P. and Jung de Andrade, M.: Nanostructured Materials for Engineering Applications (Springer-Verlag, Berlin, Heidelberg, 2011), pp. 23140.Google Scholar
Barabási, A.L.: Self assembled island formation in heteroepitaxial growth. Appl. Phys. Lett. 70, 2565 (1997).CrossRefGoogle Scholar
Reichelt, K.: Nucleation and growth of thin films. Vacuum 38, 1099 (1988).CrossRefGoogle Scholar
Narayan, J. and Larson, B.C.: Domain epitaxy: A unified paradigm for thin film growth. J. Appl. Phys. 93, 278 (2003).CrossRefGoogle Scholar
Tersoff, J. and LeGoues, F.K.: Competing relaxation mechanisms in strained layers. Phys. Rev. Lett. 72, 3570 (1994).CrossRefGoogle ScholarPubMed
Nogami, J., Liu, B.Z., Katkov, M.V., Ohbuchi, C., and Birge, N.O.: Self-assembled rare-earth silicide nanowires on Si(100). Phys. Rev. B 63, 233305 (2001).CrossRefGoogle Scholar
Gösele, U. and Tu, K.N.: Growth kinetics of planar binary diffusion couples: “Thin-film case” versus “bulk cases”. J. Appl. Phys. 53, 3252 (1982).CrossRefGoogle Scholar
Anderson, R., Baglin, J., Dempsey, J., Hammer, W., d’Heurle, F., and Petersson, S.: Nucleation-controlled thin-film interactions: Some silicides. Appl. Phys. Lett. 35, 285 (1979).CrossRefGoogle Scholar
d'Heurle, F.M.: Nucleation of a new phase from the interaction of two adjacent phases: Some silicides. J. Mater. Res. 3, 167 (1988).CrossRefGoogle Scholar
Alharbi, F., Bass, J.D., Salhi, A., Alyamani, A., Kim, H.C., and Miller, R.D.: Abundant non-toxic materials for thin film solar cells: Alternative to conventional materials. Renew. Energy 36, 2753 (2011).CrossRefGoogle Scholar
Makita, Y., Nakayama, Y., Fukuzawa, Y., Wang, S.N., Otogawa, N., Suzuki, Y., Liu, Z.X., Osamura, M., Ootsuka, T., Mise, T., and Tanoue, H.: Important research targets to be explored for β-FeSi2 device making. Thin Solid Films 461, 202 (2004).CrossRefGoogle Scholar
Liu, Z., Wang, S., Otogawa, N., Suzuki, Y., Osamura, M., Fukuzawa, Y., Ootsuka, T., Nakayama, Y., Tanoue, H., and Makita, Y.: A thin-film solar cell of high quality β-FeSi2/Si heterojunction prepared by sputtering. Sol. Energy Mater. Sol. Cell. 90, 276 (2006).CrossRefGoogle Scholar
Shaban, M., Nakashima, K., Yokoyama, W., and Yoshitake, T.: Photovoltaic properties of n-type β-FeSi2/p-type Si heterojunctions. Jpn. J. Appl. Phys. 46, L667 (2007).CrossRefGoogle Scholar
Wong, A.S.W., Ho, G.W., Liew, S.L., Chua, K.C., and Chi, D.Z.: Probing the growth of β-FeSi2 nanoparticles for photovoltaic applications: A combined imaging and spectroscopy study using transmission electron microscopy. Prog. Photovoltaics Res. Appl. 19, 464 (2011).CrossRefGoogle Scholar
Gao, Y., Liu, H.W., Lin, Y., and Shao, G.: Computational design of high efficiency FeSi2 thin-film solar cells. Thin Solid Films 519, 8490 (2011).CrossRefGoogle Scholar
Dalapati, G.K., Liew, S.L., Wong, A.S.W., Chai, Y., Chiam, S.Y., and Chi, D.Z.: Photovoltaic characteristics of p-β-FeSi2(Al)/n-Si(100) heterojunction solar cells and the effects of interfacial engineering. Appl. Phys. Lett. 98, 013507 (2011).CrossRefGoogle Scholar
Buonassisi, T., Istratov, A.A., Marcus, M.A., Lai, B., Cai, Z., Heald, S.M., and Weber, E.R.: Engineering metal-impurity nanodefects for low-cost solar cells. Nat. Mater. 4, 676 (2005).CrossRefGoogle ScholarPubMed
Terasawa, S., Inoue, T., and Ihara, M.: Fabrication of β-FeSi2/Si composite films for photovoltaic applications using scanning annealing. Sol. Energy Mater. Sol. Cells 93, 215 (2009).CrossRefGoogle Scholar
Migas, D.B. and Miglio, L.: Band-gap modifications of β-FeSi2 with lattice distortions corresponding to the epitaxial relationships on Si(111). Phys. Rev. B 62, 11063 (2000).CrossRefGoogle Scholar
Yamaguchi, K. and Mizushima, K.: Luminescent FeSi2 crystal structures induced by heteroepitaxial stress on Si(111). Phys. Rev. Lett. 86, 6006 (2001).CrossRefGoogle ScholarPubMed
Mäder, K.A., von Känel, H., and Baldereschi, A.: Electronic structure and bonding in epitaxially stabilized cubic iron silicides. Phys. Rev. B 48, 4364 (1993).CrossRefGoogle ScholarPubMed
von Känel, H., Mäder, K.A., Müller, E., Onda, N., and Sirringhaus, H.: Structural and electronic properties of metastable epitaxial FeSi1+x films on Si(111). Phys. Rev. B 45, 13807 (1992).CrossRefGoogle Scholar
Jedrecy, N., Waldhauer, A., Sauvage-Simkin, M., Pinchaux, R., and Zheng, Y.: Structural characterization of epitaxial α-derived FeSi2 on Si(111). Phys. Rev. B 49, 4725 (1994).CrossRefGoogle ScholarPubMed
Villars, P. and Calvert, L.D.: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, Vol. 3 (American Society for Metals, Metals Park, OH, 1985), p. 2232.Google Scholar
Molnár, G., Dózsa, L., Pető, G., Vértesy, Z., Koós, A.A., Horváth, Z.E., and Zsoldos, E.: Thickness dependent aggregation of Fe-silicide islands on Si substrate. Thin Solid Films 459, 48 (2004).CrossRefGoogle Scholar
Dimitriadis, C.A. and Werner, J.H.: Growth mechanism and morphology of semiconducting FeSi2 films. J. Appl. Phys. 68, 93 (1990).CrossRefGoogle Scholar
Vouroutzis, N., Zorba, T.T., Dimitriadis, C.A., Paraskevopoulos, K.M., Dózsa, L., and Molnár, G.: Growth of β-FeSi2 particles on silicon by reactive deposition epitaxy. J. Alloys Compd. 448, 202 (2008).CrossRefGoogle Scholar
Zinke-Allmang, M.: Phase separation on solid surfaces: Nucleation, coarsening and coalescence kinetics. Thin Solid Films 346, 1 (1999).CrossRefGoogle Scholar
Chen, S.Y., Chen, H.C., and Chen, L.J.: Self–assembled endotaxial α-FeSi2 nanowires with length tunability mediated by a thin nitride layer on (001)Si. Appl. Phys. Lett. 88, 193114 (2006).CrossRefGoogle Scholar
Mahato, J.C., Das, D., Juluri, R.R., Batabyal, R., Roy, A., Satyam, P.V., and Dev, B.N.: Nanodot to nanowire: A strain-driven shape transition in self-organized endotaxial CoSi2 on Si(100). Appl. Phys. Lett. 100, 263117 (2012).CrossRefGoogle Scholar