Skip to main content
    • Aa
    • Aa

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

  • Heather A. Murdoch (a1) and Christopher A. Schuh (a1)

Grain boundary segregation provides a method for stabilization of nanocrystalline metals—an alloying element that will segregate to the boundaries can lower the grain boundary energy, attenuating the driving force for grain growth. The segregation strength relative to the mixing enthalpy of a binary system determines the propensity for segregation stabilization. This relationship has been codified for the design space of positive enthalpy alloys; unfortunately, quantitative values for the grain boundary segregation enthalpy exist in only very few material systems, hampering the prospect of nanocrystalline alloy design. Here we present a Miedema-type model for estimation of grain boundary segregation enthalpy, with which potential nanocrystalline phase-forming alloys can be rapidly screened. Calculations of the necessary enthalpies are made for ∼2500 alloys and used to make predictions about nanocrystalline stability.

Corresponding author
a)Address all correspondence to this author. e-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

J. Weissmüller : Alloy effects in nanostructures. Nanostruct. Mater. 3(1–6), 261 (1993).

R. Kirchheim : Grain coarsening inhibited by solute segregation. Acta Mater. 50(2), 413 (2002).

F. Liu and R. Kirchheim : Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J. Cryst. Growth 264(1–3), 385 (2004).

R. Kirchheim : Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 55(15), 5129 (2007).

S.M. Foiles : Calculation of grain-boundary segregation in Ni-Cu alloys. Phys. Rev. B 40(17), 11502 (1989).

Y. Purohit , S. Jang , D.L. Irving , C.W. Padgett , R.O. Scattergood , and D.W. Brenner : Atomistic modeling of the segregation of lead impurities to a grain boundary in an aluminum bicrystalline solid. Mater. Sci. Eng., A 493(1–2), 97 (2008).

A.J. Detor and C.A. Schuh : Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: Atomistic computer simulations in the Ni–W system. Acta Mater. 55(12), 4221 (2007).

M. Menyhard , M. Yan , and V. Vitek : Atomistic vs phenomenological approaches to grain boundary segregation: Computer modeling of Cu-Ag alloys. Acta Metall. et Mater. 42(8), 2783 (1994).

A. Kirchner and B. Kieback : Thermodynamic model of alloy grain boundaries. Scr. Mater. 64(5), 406 (2011).

P. Lejcek : Grain Boundary Segregation in Metals Vol. 136 (Springer, Berlin, Germany, 2010).

U. Alber , H. Müllejans , and M. Rühle : Bismuth segregation at copper grain boundaries. Acta Mater. 47(15–16), 4047 (1999).

L.S. Chang and K.B. Huang : Temperature dependence of the grain boundary segregation of Bi in Ni polycrystals. Scr. Mater. 51(6), 551 (2004).

Z. Chen , F. Liu , X. Yang , C. Shen , and Y. Fan : Analysis of controlled-mechanism of grain growth in undercooled Fe–Cu alloy. J. Alloys Compd. 509(25), 7109 (2011).

F. Liu : Grain growth in nanocrystalline Fe-Ag thin film. Mater. Lett. 59(11), 1458 (2005).

J. Weissmüller , W. Krauss , T. Haubold , R. Birringer , and H. Gleiter : Atomic structure and thermal stability of nanostructured Y-Fe alloys. Nanostruct. Mater. 1(6), 439 (1992).

X. Chen and J. Mao : Thermal stability and tensile properties of electrodeposited Cu-Bi alloy. J. Mater. Eng. Perform. 20(3), 481 (2011).

K.A. Darling , B.K. VanLeeuwen , C.C. Koch , and R.O. Scattergood : Thermal stability of nanocrystalline Fe-Zr alloys. Mater. Sci. Eng., A 527(15), 3572 (2010).

C.E. Krill , H. Ehrhardt , and R. Birringer : Thermodynamic stabilization of nanocrystallinity. Z. Metallkd. 96(10), 1134 (2005).

P. Choi , M. da Silva , U. Klement , T. Al-Kassab , and R. Kirchheim : Thermal stability of electrodeposited nanocrystalline Co-1.1at.%P. Acta Mater. 53(16), 4473 (2005).

M.A. Atwater , D. Roy , K.A. Darling , B.G. Butler , R.O. Scattergood , and C.C. Koch : The thermal stability of nanocrystalline copper cryogenically milled with tungsten. Mater. Sci. Eng., A 558, 226 (2012).

M.A. Atwater , R.O. Scattergood , and C.C. Koch : The stabilization of nanocrystalline copper by zirconium. Mater. Sci. Eng., A 559, 250 (2013).

D. Osmola , P. Nolan , U. Erb , G. Palumbo , and K.T. Aust : Microstructural evolution at large driving forces during grain growth of ultrafine-grained Ni–1.2wt%P. Phys. Status Solidi A 131(2), 569 (1992).

A.A. Talin , E.A. Marquis , S.H. Goods , J.J. Kelly , and M.K. Miller : Thermal stability of Ni-Mn electrodeposits. Acta Mater. 54(7), 1935 (2006)

E. Pellicer , A. Varea , K.M. Sivaraman , S. Pane , S. Surinach , M. Dolors Baro , J. Nogues , B.J. Nelson , and J. Sort : Grain boundary segregation and interdiffusion effects in nickel-copper alloys: An effective means to improve the thermal stability of nanocrystalline nickel. ACS Appl. Mater. Interfaces 3(7) 2265 (2011).

B.K. VanLeeuwen , K.A. Darling , C.C. Koch , R.O. Scattergood , and B.G. Butler : Thermal stability of nanocrystalline Pd81Zr19. Acta Mater. 58(12), 4292 (2010).

B. Färber , E. Cadel , A. Menand , G. Schmitz , and R. Kirchheim : Phosphorus segregation in nanocrystalline Ni-3.6 at.% P alloy investigated with the tomographic atom probe (TAP). Acta Mater. 48(3), 789 (2000).

T. Hentschel , D. Isheim , R. Kirchheim , F. Muller , and H. Kreye : Nanocrystalline Ni-3.6 at.% P and its transformation sequence studied by atom-probe field-ion microscopy. Acta Mater. 48(4), 933 (2000).

S.C. Mehta , D.A. Smith , and U. Erb : Study of grain growth in electrodeposited nanocrystalline nickel-1.2 wt% phosphorus alloy. Mater. Sci. Eng., A 204(1–2), 227 (1995).

J. Eckert , J.C. Holzer , and W.L. Johnson : Thermal-stability and grain-growth behavior of mechanically alloyed nanocrystalline Fe-Cu alloys. J. Appl. Phys. 73(1), 131 (1993).

E. Rouya , G.R. Stafford , U. Bertocci , J.J. Mallett , R. Schad , M.R. Begley , R.G. Kelly , M.L. Reed , and G. Zangari : Electrodeposition of metastable Au-Ni alloys. J. Electrochem. Soc. 157(7), D396 (2010).

K.J. Bryden and J.Y. Ying : Thermal stability and hydrogen absorption characteristics of palladium-yttrium nanoalloys. Acta Mater. 44(9), 3847 (1996).

J.R. Trelewicz and C.A. Schuh : Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys. Rev. B 79(9), 094112 (2009).

T. Chookajorn , H.A. Murdoch , and C.A. Schuh : Design of stable nanocrystalline alloys. Science 337(6097), 951 (2012).

H.A. Murdoch and C.A. Schuh : Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta Mater. 61(6), 2121 (2013).

E.D. Hondros and M.P. Seah : The theory of grain boundary segregation in terms of surface adsorption analogues. Metall. Trans. A 8(9), 1363 (1977).

M.P. Seah : Grain boundary segregation. J. Phys. F: Metal Phys. 10(6), 1043 (1980).

P. Wynblatt and D. Chatain : Anisotropy of segregation at grain boundaries and surfaces. Metall. Mater. Trans. A 37(9), 2595 (2006).

K.A. Darling , B.K. VanLeeuwen , J.E. Semones , C.C. Koch , R.O. Scattergood , L.J. Kecskes , and S.N. Mathaudhu : Stabilized nanocrystalline iron-based alloys: Guiding efforts in alloy selection. Mater. Sci. Eng., A 528(13–14), 4365 (2011).

C.L. Briant : Solid solubility and grain boundary segregation. Philos. Mag. Lett. 73(6), 345 (1996).

J. Friedel : Electronic structure of primary solid solutions in metals. Adv. Phys. 3(12), 446 (1954).

P. Wynblatt and Z. Shi : Relation between grain boundary segregation and grain boundary character in FCC alloys. J. Mater. Sci. 40(11), 2765 (2005).

D. Udler and D.N. Seidman : Solute segregation at [001] tilt boundaries in dilute f.c.c. alloys. Acta Mater. 46(4), 1221 (1998).

D. Udler and D.N. Seidman : Solute-atom segregation at (002) twist boundaries in dilute Ni–Pt alloys: Structural/chemical relations. Acta Metall. Mater. 42(6), 1959 (1994).

O. Duparc , A. Larere , B. Lezzar , O. Khalfallah , and V. Paidar : Comparison of the intergranular segregation for eight dilute binary metallic systems in the Σ 11′ {332} tilt grain boundary. J. Mater. Sci. 40(12), 3169 (2005).

Y. Purohit , L. Sun , D.L. Irving , R.O. Scattergood , and D.W. Brenner : Computational study of the impurity induced reduction of grain boundary energies in nano- and bi-crystalline Al-Pb alloys. Mater. Sci. Eng., A 527(7–8), 1769 (2010).

H. Bakker : Enthalpies in Alloys: Miedema’s Semi-empirical Model (Trans Tech Publications, Enfield, New Hampshire, 1998).

O. Redlich and A.T. Kister : Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40(2), 345 (1948).

S.G. Mayr and D. Bedorf : Stabilization of Cu nanostructures by grain boundary doping with Bi: Experiment versus molecular dynamics simulation. Phys. Rev. B 76(2), 024111 (2007).

M. Zhu , Z. Wu , M. Zeng , L. Ouyang , and Y. Gao : Bimodal growth of the nanophases in the dual-phase composites produced by mechanical alloying in immiscible Cu–Ag system. J. Mater. Sci. 43(9), 3259 (2008).

Z.F. Wu , M.Q. Zeng , L.Z. Ouyang , X.P. Zhang , and M. Zhu : Ostwald ripening of Pb nanocrystalline phase in mechanically milled Al-Pb alloys and the influence of Cu additive. Scr. Mater. 53(5), 529 (2005).

F. Liu : Precipitation of a metastable Fe(Ag) solid solution upon annealing of supersaturated Fe(Ag) thin film prepared by pulsed laser deposition. Appl. Phys. A 81(5), 1095 (2005).

E. Pellicer , A. Varea , S. Pane , B.J. Nelson , E. Menendez , M. Estrader , S. Surinach , M.D. Baro , J. Nogues , and J. Sort : Nanocrystalline electroplated Cu-Ni: Metallic thin films with enhanced mechanical properties and tunable magnetic behavior. Adv. Funct. Mater. 20(6), 983 (2010).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary Materials

Murdoch Supplementary Material
Murdoch Supplementary Material

 PDF (409 KB)
409 KB


Full text views

Total number of HTML views: 13
Total number of PDF views: 164 *
Loading metrics...

Abstract views

Total abstract views: 328 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th May 2017. This data will be updated every 24 hours.