Skip to main content Accessibility help
×
Home

Evaluation of elastic modulus and hardness of thin films by nanoindentation

  • Yeon-Gil Jung (a1), Brian R. Lawn (a1), Mariusz Martyniuk (a2), Han Huang (a3) and Xiao Zhi Hu (a3)...

Abstract

Simple equations are proposed for determining elastic modulus and hardness properties of thin films on substrates from nanoindentation experiments. An empirical formulation relates the modulus E and hardness H of the film/substrate bilayer to corresponding material properties of the constituent materials via a power-law relation. Geometrical dependence of E and H is wholly contained in the power-law exponents, expressed here as sigmoidal functions of indenter penetration relative to film thickness. The formulation may be inverted to enable deconvolution of film properties from data on the film/substrate bilayers. Berkovich nanoindentation data for dense oxide and nitride films on silicon substrates are used to validate the equations and to demonstrate the film property deconvolution. Additional data for less dense nitride films are used to illustrate the extent to which film properties may depend on the method of fabrication.

Copyright

Corresponding author

b)Address all correspondence to this author. e-mail: brian.lawn@nist.gov

References

Hide All
1Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
2Fischer-Cripps, A.C.: Nanoindentation (Springer-Verlag, New York, 2002).
3Sargent, P.M. In Micro Indentation Hardness Testing, ASTM Special Technical Publication 899, edited by Blau, P.J. and Lawn, B.R. (ASTM, Philadelphia, PA, 1986), pp. 160–74.
4Burnett, P.J. and Rickerby, D.S.: The mechanical properties of wear-resistant coatings. I. Modeling of hardness behavior. Thin Solid Films 148, 41 (1987).
5Burnett, P.J. and Rickerby, D.S.: The mechanical properties of wear-resistant coatings. II. Experimental studies and interpretation of hardness. Thin Solid Films 148, 51 (1987).
6Bhattacharya, A.K. and Nix, W.D.: Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates. Int. J. Solids Struct. 24, 1287 (1988).
7Gao, H., Chiu, C-H. and Lee, J.: Elastic contact versus indentation modelling of multi-layered materials. Int. J. Solids Struct. 29, 2471 (1992).
8Larsson, P-L. and Peterson, I.R.M.: Evaluation of sharp indentation testing of thin films and ribbons on hard substrates. J. Test. Eval . 30, 64 (2002).
9Tsui, T.Y., Ross, C.A. and Pharr, G.M.: A method for making substrate-independent hardness measurements of soft metallic films on hard substrates by nanoindentation. J. Mater. Res. 18, 1383 (2003).
10Bhushan, B.: Nanomechanical characterization of solid surfaces and thin films. Int. Mater. Rev . 48, 125 (2003).
11Perriot, A. and Barthel, E.: Elastic contact to a coated half-space: Effective elastic modulus and real penetration. J. Mater. Res. 19, 600 (2004).
12Hu, X.Z. and Lawn, B.R.: A simple indentation stress–strain relation for contacts with spheres on bilayer structures. Thin Solid Films 322, 225 (1998).
13Tabor, D.: Hardness of Metals (Clarendon, Oxford, 1951).
14Lee, S.K., Wuttiphan, S. and Lawn, B.R.: Role of microstructure in hertzian contact damage in silicon nitride: I. Mechanical characterization. J. Am. Ceram. Soc. 80, 2367 (1997).
15McColm, I.J.: Ceramic Hardness (Plenum, New York, 1990), Table 6.9.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed