Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T10:29:34.923Z Has data issue: false hasContentIssue false

Evolution of martensitic transformation in Cu–Al–Ni shape memory alloys during low-temperature aging

Published online by Cambridge University Press:  31 January 2011

V. Recarte
Affiliation:
Departamento Física de la Materia Condensada, Facultad de Ciencias, Universidad del País Vasco, Aptdo. 644–48080 Bilbao, Spain
R. B. Pérez-Sáez
Affiliation:
Departamento Física de la Materia Condensada, Facultad de Ciencias, Universidad del País Vasco, Aptdo. 644–48080 Bilbao, Spain
M. L. Nó
Affiliation:
Departamento Física Aplicada II, Facultad de Ciencias, Universidad del País Vasco, Aptdo. 644-48080 Bilbao, Spain
J. San Juan
Affiliation:
Departamento Física de la Materia Condensada, Facultad de Ciencias, Universidad del País Vasco, Aptdo. 644-48080 Bilbao, Spain
Get access

Abstract

The effect of thermal aging at 473 K on martensitic transformation characteristics have been studied in the Cu–Al–Ni shape memory alloys. An increase of martensitic transformation temperatures as a result of aging has been observed. Furthermore, the martensitic transformation shows an evolution with aging time from a single β3 ⇒ β′3 structural transformation to a β3 ⇒ γ′3 + β′3 transformation. Using internal friction and thermoelectric power measurements, as well as specific thermal treatments, it has been determined that the mechanism responsible for this evolution is an increase in the degree of order, thus rejecting the participation of a γ1 precipitation process. Finally, the increase of order at the next nearest neighbors has been established as the main factor responsible of the evolution of the martensitic transformation characteristics.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Delaey, L., in Phase Transformation in Materials, edited by Haasen, P. (VCH, Weinheim, Germany, 1991), p. 339.Google Scholar
2.Nakata, Y., Tadaki, T., and Shimizu, K., Mater. Trans. JIM 31, 652 (1990).CrossRefGoogle Scholar
3.Planes, A., Mañosa, Ll., Vives, E., Rodríguez-Carvajal, J., Morín, M., Guénin, G., and Macqueron, J.L., J. Phys.: Condens. Matter. 4, 553 (1992).Google Scholar
4.Recarte, V., Lambri, O.A., Pérez-Sáez, R.B., , M.L., and SanJuan, J., Appl. Phys. Lett. 70, 3513 (1997).CrossRefGoogle Scholar
5.Rapacioli, R. and Ahlers, M., Acta Metall. 27, 777 (1979).CrossRefGoogle Scholar
6.Ahlers, M., Prog. Mater. Sci. 30, 135 (1986).CrossRefGoogle Scholar
7.Planes, A., Romero, R., and Ahlers, M., Acta Metall. Mater. 38, 757 (1990).CrossRefGoogle Scholar
8.Van Humbeeck, J., Chandrasekaran, M., and Delaey, L., ISIJ Int. 29, 388 (1989).CrossRefGoogle Scholar
9.Recarte, V., Ph.D. Thesis, Universidad del País Vasco, Bilbao, Spain (1997).Google Scholar
10.Recarte, V., , M.L., and San Juan, J., (unpublished).Google Scholar
11.Swann, P.R. and Warlimont, H., Acta Metall. 11, 511 (1963).CrossRefGoogle Scholar
12.Friend, C.M., Ortin, J., Planes, A., Mañosa, Ll., and Yoshikawa, J., Scrita Met. Mater. 24, 1641 (1990).CrossRefGoogle Scholar
13.Recarte, V., Herreros, J., , M.L., and San Juan, J., J. Phys. IV 1, C271 (1991).Google Scholar
14.Sakamoto, H. and Shimizu, K., ISIJ Int. 29, 395 (1989).CrossRefGoogle Scholar
15.Van Humbeeck, J., Van Hulle, D., Delaey, L., Ortín, J., Seguí, C., and Torra, V., Mater. Trans., JIM 28, 383 (1987).CrossRefGoogle Scholar
16.Recarte, V., , M.L., and San Juan, J., J. Phys. IV C2, 175 (1995).Google Scholar
17.Hurtado, I., Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven, Belgium (1994).Google Scholar
18.Oleaga, A., Hurtado, I., , M.L., Esnouf, C., and J., San Juan, An. Fis, Ser. B 85, 373 (1989).Google Scholar
19.Borrelly, R., Men. Sci. Rev. Met. 1, 37 (1979).Google Scholar
20.Recarte, V., Hurtado, I., Herreros, J., , M.L., and San Juan, J., Scr. Mater. 34, 255 (1996).CrossRefGoogle Scholar
21.Pelletier, J.M. and Borrelly, R., Mater. Sci. Eng. 55, 191 (1982).CrossRefGoogle Scholar
22.Pérez-Landazabal, J.I., , M.L., and San Juan, J., Scr. Metall. Mater. 32, 1307 (1995).CrossRefGoogle Scholar
23.Pérez-Sáez, R.B., Recarte, V., , M.L., and San Juan, J., Phys. Rev. B 57, 5692 (1998).CrossRefGoogle Scholar
24.Vasilenko, A. Yu., Sal'nikov, V.A., and Kosilov, A.T., Phys. Met. 4, 694 (1982).Google Scholar
25.Friend, C.M., Scr. Metall. 23, 1817 (1989).CrossRefGoogle Scholar
26.Cooreman, L., Van Humbeeck, J., and Delaey, L., Acta Metall. 38, 2663 (1990).CrossRefGoogle Scholar
27.Rodriguez, P., Ph.D. Thesis, I.N.S.A., Lyon, France (1989).Google Scholar
28.Rodríguez, P. and Guenín, G., Mater. Sci. Eng. A 129, 273 (1990).CrossRefGoogle Scholar
29.Recarte, V., Pérez-Sáez, R.B., , M.L., and San Juan, J., (unpublished).Google Scholar