Skip to main content

Evolution of microstructure and elevated-temperature properties with Mn addition in Al–Mn–Mg alloys

  • Kun Liu (a1) and X-Grant Chen (a1)

In the present work, various Mn amounts (up to 2 wt%) have been added into Al–Mn–Mg 3004 alloy to study their effect on the evolution of microstructure and elevated-temperature properties. Results showed that the dominant intermetallics are interdendritical Al6(MnFe) until to 1.5 wt% Mn. With further addition of Mn to 2 wt%, the blocky primary Al6Mn/Al6(MnFe) and high volume of fine Al6(MnFe) intermetallics form in the matrix, leading to the rapid increase on the volume fraction of intermetallics. After the precipitation heat treatment (375 °C/48 h), the precipitation of dispersoids increased with increasing Mn contents and reached the peak condition in the alloy with 1.5 wt% Mn, resulting in the highest yield strength and creep resistance at 300 °C. However, the elevated-temperature properties became worse in the alloy with 2 wt% Mn due to the lowest volume fraction of dispersoids and highest volume of dispersoid free zone.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Jürgen Eckert

Hide All
1. Li Y.J., Muggerud A.M.F., Olsen A., and Furu T.: Precipitation of partially coherent α-Al(Mn,Fe)Si dispersoids and their strengthening effect in AA 3003 alloy. Acta Mater. 60, 1004 (2012).
2. Liu K. and Chen X.G.: Development of Al–Mn–Mg 3004 alloy for applications at elevated temperature via dispersoid strengthening. Mater. Des. 84, 340 (2015).
3. Liu K. and Chen X.G.: Evolution of intermetallics, dispersoids, and elevated temperature properties at various Fe contents in Al–Mn–Mg 3004 alloys. Metall. Mater. Trans. B 47B, 3291 (2015).
4. Li Y.J. and Arnberg L.: Quantitative study on the precipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization. Acta Mater. 51, 3415 (2003).
5. Muggerud A.M.F., Mørtsell E.A., Li Y., and Holmestad R.: Dispersoid strengthening in AA3xxx alloys with varying Mn and Si content during annealing at low temperatures. Mater. Sci. Eng., A 567, 21 (2013).
6. Liu K., Ma H., and Chen X.G.: Enhanced elevated-temperature properties via Mo addition in Al–Mn–Mg 3004 alloy. J. Alloys Compd. 694, 354 (2017).
7. Liu K., Nabawy A.M., and Chen X-G.: Influence of TiB2 nanoparticles on the elevated-temperature properties of Al–Mn–Mg 3004 alloy. Trans. Nonferrous Met. Soc. China 27, 771 (2017).
8. Kaufman J.G.: Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Data at High and Low Temperatures (ASM International; Aluminum Association, Materials Park, Ohio; Washington, D.C., 1999); pp. 1693, 162–232.
9. Li Y.J. and Arnberg L.: Evolution of eutectic intermetallic particles in DC-cast AA3003 alloy during heating and homogenization. Mater. Sci. Eng., A 347, 130 (2003).
10. Muggerud A.M.F., Li Y., and Holmestad R.: Composition and orientation relationships of constituent particles in 3xxx aluminum alloys. Philos. Mag. 94, 556 (2014).
11. Shukla A. and Pelton A.D.: Thermodynamic assessment of the Al–Mn and Mg–Al–Mn systems. J. Phase Equilib. Diffus. 30, 28 (2009).
12. Liu X.J., Ohnuma I., Kainuma R., and Ishida K.: Thermodynamic assessment of the aluminum–manganese (Al–Mn) binary phase diagram. J. Phase Equilib. 20, 45 (1999).
13. Mohammadtaheri M.: A new metallographic technique for revealing grain boundaries in aluminum alloys. Metallogr., Microstruct., Anal. 1, 224 (2012).
14. Liu P.X., Liu Y., and Xu R.: Microstructure quantitative analysis of directionally solidified Al–Ni–Y ternary eutectic alloy. Trans. Nonferrous Met. Soc. China 24, 2443 (2014).
15. Weibel E.R. and Elias H.: Quantitative Methods in Morphology (Springer-Verlag, Berlin, New York, 1967); pp. 8998.
16. Bahadur A.: Intermetallic phases in Al–Mn alloys. J. Mater. Sci. 23, 48 (1988).
17. Kang H., Li X., Su Y., Liu D., Guo J., and Fu H.: 3-D morphology and growth mechanism of primary Al6Mn intermetallic compound in directionally solidified Al–3 at.% Mn alloy. Intermetallics 23, 32 (2012).
18. Liu Y., Huang G., Sun Y., Zhang L., Huang Z., Wang J., and Liu C.: Effect of Mn and Fe on the formation of Fe- and Mn-rich intermetallics in Al–5Mg–Mn alloys solidified under near-rapid cooling. Materials 9, 88 (2016).
19. Zhao Q., Holmedal B., and Li Y.: Influence of dispersoids on microstructure evolution and work hardening of aluminium alloys during tension and cold rolling. Philos. Mag. 93, 2995 (2013).
20. Es-Said O.S., Zeihen A., Ruprich M., Quattrocchi J., Thomas M., Shin K.H., O’Brien M., Johansen D., Tijoe W.H., and Ruhl D.: Effect of processing parameters on the earing and mechanical properties of strip cast type 3004 Al alloy. J. Mater. Eng. Perform. 3, 123 (1994).
21. Arzt E.: Creep of dispersion strengthened materials: A critical assessment. Res Mech. 31, 399 (1991).
22. Knipling K.E., Dunand D.C., and Seidman D.N.: Criteria for developing castable, creep-resistant aluminum-based alloys—A review. Z. Metallkd. 97, 246 (2006).
23. Dieter G.E.: Mechanical Metallurgy (McGraw-Hill, New York, 1986); pp. 449450.
24. Karnesky R.A., Meng L., and Dunand D.C.: Strengthening mechanisms in aluminum containing coherent Al3Sc precipitates and incoherent Al2O3 dispersoids. Acta Mater. 55, 1299 (2007).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 12
Total number of PDF views: 41 *
Loading metrics...

Abstract views

Total abstract views: 194 *
Loading metrics...

* Views captured on Cambridge Core between 22nd June 2017 - 15th December 2017. This data will be updated every 24 hours.