Skip to main content
×
Home
    • Aa
    • Aa

Evolution of titanium dioxide one-dimensional nanostructures from surface-reaction-limited pulsed chemical vapor deposition

  • Xudong Wang (a1) and Jian Shi (a1)
Abstract
Abstract

This paper reviews the recent development of surface-reaction-limited pulsed chemical vapor deposition (SPCVD) technique for the growth of TiO2 one-dimensional nanostructures. SPCVD uses separated TiCl4 and H2O precursor pulses, and the anisotropic growth of TiO2 crystals is attributed to the combined effects of surface recombination and HCl restructuring at high temperature during elongated purging time. Therefore, the crystal growth is effectively decoupled from precursor vapor concentration, which allows uniform growth of TiO2 nanorods (NRs) inside highly confined spaces. The phase of TiO2 NRs can be tuned from anatase to rutile by raising the deposition temperature. Au catalysts are able to enhance the growth rate and led to bifurcated nanowire (NW) morphology. A high density three-dimensional (3D) NW architecture was created by SPCVD growing TiO2NRs inside dense Si NW forests. Such 3D structures offer both large surface area and excellent charge transport property, which substantially improved the efficiency of photoelectrochemical devices.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: xudong@engr.wisc.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

H.G. Yang , C.H. Sun , S.Z. Qiao , J. Zou , G. Liu , S.C. Smith , H.M. Cheng , and G.Q. Lu : Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638 (2008).

J.T. Jiu , S. Isoda , F.M. Wang , and M. Adachi : Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film. J. Phys. Chem. B 110, 2087 (2006).

S.U.M. Khan , M. Al-Shahry , and W.B. Ingler : Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243 (2002).

B. Liu and E.S. Aydil : Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985 (2009).

Y.J. Hwang , A. Boukai , and P.D. Yang : High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett. 9, 410 (2009).

M. Adachi , Y. Murata , J. Takao , J.T. Jiu , M. Sakamoto , and F.M. Wang : Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the tnq#x201C;oriented attachmenttnq#x201D; mechanism. J. Am. Chem. Soc. 126, 14943 (2004).

A.S. Zuruzi , A. Kolmakov , N.C. MacDonald , and M. Moskovits : Highly sensitive gas sensor based on integrated titania nanosponge arrays. Appl. Phys. Lett. 88, 102904 (2006).

A.R. Armstrong , G. Armstrong , J. Canales , R. Garcia , and P.G. Bruce : Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17, 862 (2005).

J.W. Liu , Y.T. Kuo , K.J. Klabunde , C. Rochford , J. Wu , and J. Li : Novel dye-sensitized solar cell architecture using TiO2-coated vertically aligned carbon nanofiber arrays. ACS Appl. Mater. Interfaces 1, 1645 (2009).

M. Ni , M.K.H. Leung , D.Y.C. Leung , and K. Sumathy : A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable Sustainable Energy Rev. 11, 401 (2007).

M. Law , L.E. Greene , A. Radenovic , T. Kuykendall , J. Liphardt , and P.D. Yang : ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. J. Phys. Chem. B 110, 22652 (2006).

L.E. Greene , M. Law , B.D. Yuhas , and P.D. Yang : ZnO-TiO2 core-shell nanorod/P3HT solar cells. J. Phys. Chem. C 111, 18451 (2007).

A.S. Barnard and P. Zapol : Predicting the energetics, phase stability, and morphology evolution of faceted and spherical anatase nanocrystals. J. Phys. Chem. B 108, 18435 (2004).

A.S. Barnard and L.A. Curtiss : Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett. 5, 1261 (2005).

Z. Miao , D.S. Xu , J.H. Ouyang , G.L. Guo , X.S. Zhao , and Y.Q. Tang : Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires. Nano Lett. 2, 717 (2002).

Y.X. Zhang , G.H. Li , Y.X. Jin , Y. Zhang , J. Zhang , and L.D. Zhang : Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chem. Phys. Lett. 365, 300 (2002).

E. Formo , E. Lee , D. Campbell , and Y.N. Xia : Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications. Nano Lett. 8, 668 (2008).

E. Hosono , S. Fujihara , K. Kakiuchi , and H. Imai : Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. J. Am. Chem. Soc. 126, 7790 (2004).

D.V. Bavykin , J.M. Friedrich , and F.C. Walsh : Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv. Mater. 18, 2807 (2006).

R. Yoshida , Y. Suzuki , and S. Yoshikawa : Syntheses of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments. J. Solid State Chem. 178, 2179 (2005).

G.Y. Chen , M.W. Lee , and G.J. Wang : Fabrication of dye-sensitized solar cells with a 3D nanostructured electrode. Int. J. Photoenergy 2010, 585621 (2010).

X.J. Feng , K. Shankar , O.K. Varghese , M. Paulose , T.J. Latempa , and C.A. Grimes : Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett. 8, 3781 (2008).

J.M. Wu , H.C. Shih , W.T. Wu , Y.K. Tseng , and I.C. Chen : Thermal evaporation growth and the luminescence property of TiO2 nanowires. J. Cryst. Growth 281, 384 (2005).

S.S. Amin , A.W. Nicholls , and T.T. Xu : A facile approach to synthesize single-crystalline rutile TiO2 one-dimensional nanostructures. Nanotechnology 18, 445609 (2007).

J.Y. Ha , B.D. Sosnowchik , L.W. Lin , D.H. Kang , and A.V. Davydov : Patterned growth of TiO2 nanowires on titanium substrates. Appl. Phys. Express 4, 065002 (2011).

M.H. Kim , J.M. Baik , J.P. Zhang , C. Larson , Y.L. Li , G.D. Stucky , M. Moskovits , and A.M. Wodtke : TiO2 nanowire growth driven by phosphorus-doped nanocatalysis. J. Phys. Chem. C 114, 10697 (2010).

S.K. Pradhan , P.J. Reucroft , F.Q. Yang , and A. Dozier : Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J. Cryst. Growth 256, 83 (2003).

J. Shi , C.L. Sun , M.B. Starr , and X.D. Wang : Growth of titanium dioxide nanorods in 3D-confined spaces. Nano Lett. 11, 624 (2011).

S.M. George : Atomic layer deposition: An overview. Chem. Rev. 110, 111 (2010).

A. Danon , K. Bhattacharyya , B.K. Vijayan , J.L. Lu , D.J. Sauter , K.A. Gray , P.C. Stair , and E. Weitz : Effect of reactor materials on the properties of titanium oxide nanotubes. ACS Catal. 2, 45 (2012).

J. Shi , Y. Hara , C.L. Sun , M.A. Anderson , and X.D. Wang : Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes. Nano Lett. 11, 3413 (2011).

M. Ritala , M. Leskela , E. Nykanen , P. Soininen , and L. Niinisto : Growth of titanium dioxide thin films by atomic layer epitaxy. Thin Solid Films 225, 288 (1993).

J. Shi and X. Wang : Growth of rutile titanium dioxide nanowires by pulsed chemical vapor deposition. Cryst. Growth Des. 11, 949 (2011).

S. Takabayashi , R. Nakamura , and Y. Nakato : A nano-modified Si/TiO2 composite electrode for efficient solar water splitting. J. Photochem. Photobiol., A 166, 107 (2004).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 116 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 30th April 2017. This data will be updated every 24 hours.