Skip to main content
×
×
Home

Evolution of titanium dioxide one-dimensional nanostructures from surface-reaction-limited pulsed chemical vapor deposition

  • Xudong Wang (a1) and Jian Shi (a1)
Abstract
Abstract

This paper reviews the recent development of surface-reaction-limited pulsed chemical vapor deposition (SPCVD) technique for the growth of TiO2 one-dimensional nanostructures. SPCVD uses separated TiCl4 and H2O precursor pulses, and the anisotropic growth of TiO2 crystals is attributed to the combined effects of surface recombination and HCl restructuring at high temperature during elongated purging time. Therefore, the crystal growth is effectively decoupled from precursor vapor concentration, which allows uniform growth of TiO2 nanorods (NRs) inside highly confined spaces. The phase of TiO2 NRs can be tuned from anatase to rutile by raising the deposition temperature. Au catalysts are able to enhance the growth rate and led to bifurcated nanowire (NW) morphology. A high density three-dimensional (3D) NW architecture was created by SPCVD growing TiO2NRs inside dense Si NW forests. Such 3D structures offer both large surface area and excellent charge transport property, which substantially improved the efficiency of photoelectrochemical devices.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: xudong@engr.wisc.edu
References
Hide All
1.Yang H.G., Sun C.H., Qiao S.Z., Zou J., Liu G., Smith S.C., Cheng H.M., and Lu G.Q.: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638 (2008).
2.Jiu J.T., Isoda S., Wang F.M., and Adachi M.: Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film. J. Phys. Chem. B 110, 2087 (2006).
3.Khan S.U.M., Al-Shahry M., and Ingler W.B.: Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243 (2002).
4.Liu B. and Aydil E.S.: Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985 (2009).
5.Hwang Y.J., Boukai A., and Yang P.D.: High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett. 9, 410 (2009).
6.Adachi M., Murata Y., Takao J., Jiu J.T., Sakamoto M., and Wang F.M.: Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the tnq#x201C;oriented attachmenttnq#x201D; mechanism. J. Am. Chem. Soc. 126, 14943 (2004).
7.Zuruzi A.S., Kolmakov A., MacDonald N.C., and Moskovits M.: Highly sensitive gas sensor based on integrated titania nanosponge arrays. Appl. Phys. Lett. 88, 102904 (2006).
8.Armstrong A.R., Armstrong G., Canales J., Garcia R., and Bruce P.G.: Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17, 862 (2005).
9.Liu J.W., Kuo Y.T., Klabunde K.J., Rochford C., Wu J., and Li J.: Novel dye-sensitized solar cell architecture using TiO2-coated vertically aligned carbon nanofiber arrays. ACS Appl. Mater. Interfaces 1, 1645 (2009).
10.Ni M., Leung M.K.H., Leung D.Y.C., and Sumathy K.: A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable Sustainable Energy Rev. 11, 401 (2007).
11.Bach U., Lupo D., Comte P., Moser J.E., Weissortel F., Salbeck J., Spreitzer H., and Gratzel M.: Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583 (1998).
12.Law M., Greene L.E., Radenovic A., Kuykendall T., Liphardt J., and Yang P.D.: ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. J. Phys. Chem. B 110, 22652 (2006).
13.Greene L.E., Law M., Yuhas B.D., and Yang P.D.: ZnO-TiO2 core-shell nanorod/P3HT solar cells. J. Phys. Chem. C 111, 18451 (2007).
14.Barnard A.S. and Zapol P.: Predicting the energetics, phase stability, and morphology evolution of faceted and spherical anatase nanocrystals. J. Phys. Chem. B 108, 18435 (2004).
15.Barnard A.S. and Curtiss L.A.: Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett. 5, 1261 (2005).
16.Miao Z., Xu D.S., Ouyang J.H., Guo G.L., Zhao X.S., and Tang Y.Q.: Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires. Nano Lett. 2, 717 (2002).
17.Zhang Y.X., Li G.H., Jin Y.X., Zhang Y., Zhang J., and Zhang L.D.: Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chem. Phys. Lett. 365, 300 (2002).
18.Formo E., Lee E., Campbell D., and Xia Y.N.: Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications. Nano Lett. 8, 668 (2008).
19.Hosono E., Fujihara S., Kakiuchi K., and Imai H.: Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. J. Am. Chem. Soc. 126, 7790 (2004).
20.Bavykin D.V., Friedrich J.M., and Walsh F.C.: Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv. Mater. 18, 2807 (2006).
21.Yoshida R., Suzuki Y., and Yoshikawa S.: Syntheses of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments. J. Solid State Chem. 178, 2179 (2005).
22.Chen G.Y., Lee M.W., and Wang G.J.: Fabrication of dye-sensitized solar cells with a 3D nanostructured electrode. Int. J. Photoenergy 2010, 585621 (2010).
23.Feng X.J., Shankar K., Varghese O.K., Paulose M., Latempa T.J., and Grimes C.A.: Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett. 8, 3781 (2008).
24.Wu J.M., Shih H.C., Wu W.T., Tseng Y.K., and Chen I.C.: Thermal evaporation growth and the luminescence property of TiO2 nanowires. J. Cryst. Growth 281, 384 (2005).
25.Amin S.S., Nicholls A.W., and Xu T.T.: A facile approach to synthesize single-crystalline rutile TiO2 one-dimensional nanostructures. Nanotechnology 18, 445609 (2007).
26.Ha J.Y., Sosnowchik B.D., Lin L.W., Kang D.H., and Davydov A.V.: Patterned growth of TiO2 nanowires on titanium substrates. Appl. Phys. Express 4, 065002 (2011).
27.Kim M.H., Baik J.M., Zhang J.P., Larson C., Li Y.L., Stucky G.D., Moskovits M., and Wodtke A.M.: TiO2 nanowire growth driven by phosphorus-doped nanocatalysis. J. Phys. Chem. C 114, 10697 (2010).
28.Pradhan S.K., Reucroft P.J., Yang F.Q., and Dozier A.: Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J. Cryst. Growth 256, 83 (2003).
29.Shi J., Sun C.L., Starr M.B., and Wang X.D.: Growth of titanium dioxide nanorods in 3D-confined spaces. Nano Lett. 11, 624 (2011).
30.George S.M.: Atomic layer deposition: An overview. Chem. Rev. 110, 111 (2010).
31.Danon A., Bhattacharyya K., Vijayan B.K., Lu J.L., Sauter D.J., Gray K.A., Stair P.C., and Weitz E.: Effect of reactor materials on the properties of titanium oxide nanotubes. ACS Catal. 2, 45 (2012).
32.Shi J., Hara Y., Sun C.L., Anderson M.A., and Wang X.D.: Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes. Nano Lett. 11, 3413 (2011).
33.Ritala M., Leskela M., Nykanen E., Soininen P., and Niinisto L.: Growth of titanium dioxide thin films by atomic layer epitaxy. Thin Solid Films 225, 288 (1993).
34.Shi J. and Wang X.: Growth of rutile titanium dioxide nanowires by pulsed chemical vapor deposition. Cryst. Growth Des. 11, 949 (2011).
35.Takabayashi S., Nakamura R., and Nakato Y.: A nano-modified Si/TiO2 composite electrode for efficient solar water splitting. J. Photochem. Photobiol., A 166, 107 (2004).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 37 *
Loading metrics...

Abstract views

Total abstract views: 188 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 16th January 2018. This data will be updated every 24 hours.