Skip to main content
×
Home

Examination of the impact of electron–phonon coupling on fission enhanced diffusion in uranium dioxide using classical molecular dynamics

  • Jonathan L. Wormald (a1) and Ayman I. Hawari (a1)
Abstract
Abstract

Fission energy deposition in nuclear fuel has been experimentally observed to influence diffusion in uranium dioxide (UO2). This deposition is initially dominated by inelastic interactions with the electronic structure. Subsequently, energy is transferred to the lattice through electron–phonon (e–p) coupling resulting in a thermal spike and an associated pressure spike, which are presumed to contribute to diffusion enhancement. Molecular dynamics (MD) simulations were performed to investigate uranium diffusion enhancement in UO2 while varying the e–p coupling. The model was composed of 10 × 60 × 60 unit cells and used a Buckingham potential. A two-temperature model captured energy deposition in the electronic subsystem and its transfer to the atomic lattice. Experimentally, the fission enhanced diffusion coefficient (D*) of uranium in UO2 is observed to be athermal and proportional to fission rate density. For fission rate densities that are reported in experiment, the MD predicted D* was found to be on the order of 10−18 cm2/s, in reasonable agreement with experimental trends, and to decrease as e–p coupling was weakened.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: ayman.hawari@ncsu.edu
Footnotes
Hide All

Contributing Editor: Joel Ribis

Footnotes
References
Hide All
1. Matzke Hj.: Radiation effects in nuclear fuel. In Radiation Effects in Solids, Sickafus K.E., Kotomin E.A., and Uberuaga B.P. eds.; Springer: Berlin, Germany, 2007; pp. 401420.
2. Matzke Hj.: Radiation damage in crystalline insulators, oxides and ceramic nuclear fuels. Radiat. Eff. 64, 3 (1982).
3. Kirihara T., Nakae N., Matsui H., and Tamaki M.: Fission dependence of the lattice parameter change in fuel elements. In Plutonium and Other Actinides, North Holland Publishing Co.: Amsterdam, 1976; pp. 903–193.
4. Tamaki M., Ohnuki A., Matsui H., Matsumoto G., and Kirihara T.: Variation in magnetic ordering of UN by neutron irradiation. Physica B+C 102, 258 (1980).
5. Matsui H., Horiki M., and Kirihara T.: Irradiation of uranium carbides in JMTR. J. Nucl. Sci. Technol. 18, 922 (1981).
6. Matzke Hj., Lucuta P.G., and Wiss T.: Swift heavy ion and fission damage effects in UO2 . Nucl. Instrum. Methods Phys. Res., Sect. B 166167, 920 (2000).
7. Rochi C. and Wiss T.: Fission-fragment spikes in uranium dioxide. J. Appl. Phys. 92, 5837 (2002).
8. Rochi C.: The nature of surface fission tracks in UO2 . J. Appl. Phys. 44, 3575 (1973).
9. Wiss T., Matzke Hj., Trautman C., Toulemonde M., and Klaummünzer S.: Radiation damage in UO2 by swift heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 122, 583 (1997).
10. Ruello P., Becker K.D., Ullrich K., Desgranges L., Petot C., and Petot-Ervas G.: Thermal variation of the optical absorption of UO2: Determination of the small polaron self-energy. J. Nucl. Mater. 328, 46 (2004).
11. Momin A.C., Mirz E.B., and Mathews M.D.: High temperature X-ray diffractometric studies on the lattice thermal expansion behavior of UO2, ThO2, and (U0.2Th0.8)O2 doped with fission product oxides. J. Nucl. Mater. 185, 308 (1991).
12. Höh A. and Matzke Hj.: Fission-enhanced self-diffusion of uranium in UO2 and UC. J. Nucl. Mater. 48, 157 (1973).
13. Matzke Hj.: Radiation enhanced diffusion in UO2 and (U,Pu)O2 . Radiat. Eff. 75, 317 (1983).
14. Brucklacher D. and Dienst W.: Creep behavior of ceramic fuels under neutron irradiation. J. Nucl. Mater. 42, 285 (1972).
15. Dienst W.: Irradiation induced creep of ceramic nuclear fuel. J. Nucl. Mater. 65, 1 (1977).
16. Matzke Hj.: Diffusion processes in nuclear fuels. J. Less-Common Met. 121, 537 (1986).
17. Béred N., Chevarier A., Moncoffre N., Sainsot Ph., Faust H., and Catalette H.: Fission enhanced diffusion of uranium in zirconia. Nucl. Instrum. Methods Phys. Res., Sect. B 240, 711 (2005).
18. Arai Y., Suzuki Y., Iwai T., and Ohmichi T.: Dependence of the thermal conductivity of (U,Pu)N on porosity and plutonium content. J. Nucl. Mater. 195, 37 (1992).
19. De Coninck R., Van Lierde W., and Gijs A.: Uranium carbide: Thermal diffusivity, thermal conductivity and spectral emissivity at high temperatures. J. Nucl. Mater. 57, 69 (1975).
20. Fink J.K.: Thermophysical properties of uranium dioxide. J. Nucl. Mater. 279, 1 (2000).
21. Leclercq B., Mévrel R., Liedtke V., and Hohenauer W.: Thermal conductivity of zirconia-based ceramics for thermal barrier coating. Materialwiss. Werkstofftech. 33, 406 (2003).
22. Chang J.P., Lin Y., and Chu K.: Rapid thermal chemical vapor deposition of zirconium oxide for metal-oxide-semiconductor field effect transistor application. J. Vac. Sci. Technol., B 19, 1782 (2001).
23. Blochl P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
24. Kresse G. and Joubert D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
25. Kresse G. and Furthmüller J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).
26. Kresse G. and Furthmüller J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
27. Perdew J.P., Burke K., and Ernzerhof M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
28. Perdew J.P., Burke K., and Ernzerhof M.: Erratum: Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997).
29. Nishio K., Yamamoto H., Kanno I., Kimura I., and Nakagomeb Y.: A system for correlation measurement of fission fragment and prompt neutrons for thermal neutron induced fission. Nucl. Instrum. Methods Phys. Res., Sect. A 385, 171 (1990).
30. Ziegler J.F., Ziegler M.D., and Biersack J.P.: SRIM: The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010).
31. Lifshitz I.M., Kaganov M.I., and Taratanov L.V.: On the theory of radiation-induced changes in metals. J. Nucl. Energy, Part A 12, 69 (1960).
32. Toulemonde M., Paumier E., and Dufour C.: Thermal spike model in the electronic stopping power regime. Radiat. Eff. Defects Solids 126, 201 (1993).
33. Toulemonde M., Dufour Ch., Meftah A., and Paumier E.: Transient thermal process in heavy ion irradiation of crystalline inorganic insulators. Nucl. Instrum. Methods Phys. Res., Sect. B 166167, 903 (2000).
34. Osmani O., Medvedev N., Schleberger M., and Rethfeld B.: Energy dissipation in dielectrics after swift heavy-ion impact: A hybrid model. Phys. Rev. B 84, 214105 (2011).
35. Avasthi D.K. and Metha G.K.: Swift Heavy Ions for Materials Engineering and Nanostructuring (Capital Publishing Company, Springer, New Delhi, India, 2011).
36. Caro A. and Victoria M.: Ion-electron interaction in molecular dynamics cascades. Phys. Rev. B 40, 2287 (1989).
37. Duffy D.M. and Rutherford A.M.: Including the effects of electronic stopping and electron-ion interactions in radiation damage simulations. J. Phys.: Condens. Matter 19, 016207 (2007).
38. Duffy D.M., Daraszewicz S.L., and Mulroue J.: Modelling the effects of electronic excitations in ionic-covalent materials. Nucl. Instrum. Methods Phys. Res., Sect. B 277, 21 (2012).
39. Daraszewicz S.L. and Duffy D.M.: Extending the inelastic thermal spike model for semiconductors and insulators. Nucl. Instrum. Methods Phys. Res., Sect. B 260, 1646 (2011).
40. Klaumünzer S.: Thermal-spike models for ion track physics: A critical examination. Mat.-Fys. Medd. 52, 263 (2006).
41. Toulemonde M., Assmann W., Dufour C., Meftah A., Studer F., and Trautman C.: Experimental phenomena and thermal spike model description of ion tracks in amorphisable inorganic insulators. Mat.-Fys. Medd. 52, 263 (2006).
42. Wang Z.G., Dufour Ch., Paumier E., and Toulemonde M.: The Se sensitivity of metals under swift-heavy-ion irradiation: A transient thermal process. J. Phys.: Condens. Matter 6, 6733 (1994).
43. Duffy D.M., Itoh N., Rutherford A.M., and Stoneham A.M.: Making tracks in metals. J. Phys.: Condens. Matter 20, 082201 (2008).
44. Backman M., Toulemonde M., Pakarinen O.H., Juslin N., Djurabekova F., Nordlund K., Debelle A., and Weber W.J.: Molecular dynamics simulations of swift heavy ion induced defect recovery in SiC. Comput. Mater. Sci. 67, 261 (2013).
45. Huang M., Schwen D., and Averback R.S.: Molecular dynamic simulation of fission fragment induced thermal spikes in UO2: Sputtering and bubble re-solution. J. Nucl. Mater. 399, 175 (2010).
46. Waligorski M.R.P., Hamm R.N., and Katz R.: The radial distribution of dose around the path of a heavy ion in liquid water. Nucl. Tracks Meas. 11, 309 (1986).
47. Allen P.B.: Theory of thermal relaxation of electrons in metals. Phys. Rev. Lett. 59, 1460 (1987).
48. Harp J.M.: Examination of noble fission gas diffusion in uranium dioxide using atomistic simulation. Ph.D. thesis, North Carolina State University, NC, 2010.
49. Plimpton S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).
50. Plimpton S.J., Pollock R., and Stevens M.: Particle-mesh Ewald and rRESPA for parallel molecular dynamics simulation. In Proceedings of the Eight SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN (1997).
51. Pakarinen J., He L., Gupta M., Gan J., Nelson A., El-Azab A., and Allen T.R.: 2.6 MeV proton irradiation effects on the surface integrity of depleted UO2 . Nucl. Instrum. Methods Phys. Res., Sect. B 319, 100 (2014).
52. He L.F., Pakarinen J., Gan J., Nelson A.T., Bai X-M., El-Azab A., and Allen T.R.: Microstructure evolution in Xe-irradiated UO2 at room temperature. Nucl. Instrum. Methods Phys. Res., Sect. B 330, 55 (2014).
53. Matzke Hj.: On uranium self-diffusion in UO2 and UO2+x . J. Nucl. Mater. 30, 26 (1986).
54. Lindner R. and Schmitz F.: Diffusion of uranium 233 in uranium oxide. Naturforscher 169, 1373 (1961).
55. Sabioni A.C.S., Ferraz W.B., and Millot F.: First study of uranium self-diffusion in UO2 by SIMS. J. Nucl. Mater. 257, 180 (1998).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 6
Total number of PDF views: 49 *
Loading metrics...

Abstract views

Total abstract views: 148 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th November 2017. This data will be updated every 24 hours.