Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T21:35:41.063Z Has data issue: false hasContentIssue false

Expanded graphite/cobalt ferrite/polyaniline ternary composites: Fabrication, properties, and potential applications

Published online by Cambridge University Press:  11 October 2011

Liangchao Li*
Affiliation:
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
Chen Xiang
Affiliation:
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
Haisheng Qian
Affiliation:
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
Bin Hao
Affiliation:
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
Keyu Chen
Affiliation:
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
Ru Qiao
Affiliation:
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: sky52@zjnu.cn
Get access

Abstract

Expanded graphite/cobalt ferrite/polyaniline (EG/CF/PANI) ternary composites were obtained by a two-step process. The intercalation compound, CF embedded in EG, was synthesized by a coprecipitation method. PANI could then be coated on the surface of the EG/CF microparticles by in-situ polymerization to form ternary composites of EG/CF/PANI. The results indicate that the electrical and magnetic performance of EG/CF and EG/CF/PANI composites are related to their composition. The EG/CF composite with mass ratio of 1.0 has the maximal conductivity (833.33 S·cm−1) among the binary composites. Saturation magnetizations (Ms) of the EG/CF composite with mEG/mCF of 0.8 is the largest among EG/CF composites, the ternary composites of EG/CF/PANI were prepared from the EG/CF composite at this mass ratio. The electromagnetic wave absorbing property of all ternary composites excelled those of EG/CF composites, and the sample with 40 wt% of PANI has the best absorption properties in the range of 8–18 GHz frequency.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Meshram, M.R., Agrawal, N.K., Sinha, B., and Misra, P.S.: Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. J. Magn. Magn. Mater. 271, 207 (2004).CrossRefGoogle Scholar
2.Feng, Y.B., Qiu, T., Shen, C.Y., and Li, X.Y.: Electromagnetic and absorption properties of carbonyl iron/rubber radar absorbing materials. IEEE Trans. Magn. 42, 363 (2006).CrossRefGoogle Scholar
3.Mo, Z.L., Sun, Y.X., Chen, H., Zhang, P., Zuo, D.D., and Liu, Y.Z.: Preparation and characterization of a PMMA/Ce(OH)(3), Pr2O3/graphite nanosheet composite. Polymer 46, 12670 (2005).CrossRefGoogle Scholar
4.Mo, Z.L., Zuo, D.D., Chen, H., Sun, Y.X., and Zhang, P.: Synthesis of graphite nanosheets/AgCl/polypyrrole composites via two-step inverse microemulsion method. Eur. Polym. J. 43, 300 (2007).CrossRefGoogle Scholar
5.Wang, S., Bao, H.M., Yang, P.Y., and Chen, G.: Immobilization of trypsin in polyaniline-coated nano-Fe3O4/carbon nanotube composite for protein digestion. Anal. Chim. Acta. 612, 182 (2008).CrossRefGoogle ScholarPubMed
6.Zhang, B.S., Feng, Y., Xiong, J., Yang, Y., and Lu, H.X.: Microwave-absorbing properties of De-aggregated flake-shaped carbonyl-iron particle composites at 2-18 GHz. IEEE Trans. Magn. 42, 1778 (2006).CrossRefGoogle Scholar
7.Lima, R.D.C., Pinho, M.S., and Gregori, M.L., ReisNunes, C., and Ogasawara, T.: Effect of double substituted m-barium hexaferrites on microwave absorption properties. Mater. Sci. 22, 245 (2004).Google Scholar
8.Park, M.J., Choi, J.H., and Kim, S.S.: Wide bandwidth pyramidal absorbers of granular ferrite and carbonyl iron powders. IEEE Trans. Magn. 36, 3272 (2000).CrossRefGoogle Scholar
9.Xie, G.W., Wang, Z.B., Cui, Z.L., and Shi, Y.L.: Ni-Fe-Co-P coatings on coiled carbon nanofibers. Carbon 43, 3181 (2005).CrossRefGoogle Scholar
10.Fan, Y.Z., Yang, H.B., Li, M.H., and Zou, G.T.: Evaluation of the microwave absorption property of flake graphite. Mater. Chem. Phys. 115, 696 (2009).CrossRefGoogle Scholar
11.Li, L.C., Jiang, J., and Xu, F.: Novel polyaniline-LiNi0.5La0.02Fe1.98O4 nanocomposites prepared via an in situ polymerization. Eur. Polym. J. 42, 2221 (2006).CrossRefGoogle Scholar
12.Li, L.C., Xiang, C., Liang, X.I., and Hao, B.: Zn0.6Cu0.4Cr0.5Fe1.46Sm0.04O4 ferrite and its nanocomposites with polyaniline and polypyrrole: Preparation and electromagnetic properties. Synth. Met. 160, 28 (2010).CrossRefGoogle Scholar
13.Yang, X.T., Xu, L.G., Ng, S.C., and Chan, S.O.H.: Magnetic and electrical properties of polypyrrole-coated γ-Fe2O3 nanocomposite particles. Nanotechnology 14, 624 (2003).Google Scholar
14.Liu, J. and Wan, M.X.: Composites of polypyrrole with conducting and ferromagnetic behaviors. J. Polym. Sci., Part A: Polym. Chem. 38, 2734 (2000).3.0.CO;2-R>CrossRefGoogle Scholar
15.Wu, K.H., Ting, T.H., Wang, G.P., Yang, C.C., and Tsai, C.W.: Synthesis and microwave electromagnetic characteristics of bamboo charcoal/polyaniline composites in 2-40 GHz. Synth. Met. 158, 688 (2008).CrossRefGoogle Scholar
16.Micheli, D., Apollo, C., Pastore, R., and Marchetti, M.: X-band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation. Compos. Sci. Technol. 70, 400 (2010).CrossRefGoogle Scholar
17.Ting, T.H., Wu, K.H., Wang, G.P., Ho, W.D., and Shih, C.C.: Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites. Polym. Degrad. Stab. 93, 483 (2008).Google Scholar
18.Feng, W., Sun, E., Fujii, A., Wu, H.C., Niihara, K., and Yoshino, K.: Synthesis and characterization of photoconducting polyaniline-TiO2 nanocomposite. Bull. Chem. Soc. Jpn. 73, 2627 (2000).CrossRefGoogle Scholar
19.Kinlen, P.J., Liu, J., Ding, Y., Graham, C.R., and Remsen, E.E.: Emulsion polymerization process for organically soluble and electrically conducting polyaniline. Macromolecules 31, 1735 (1998).CrossRefGoogle Scholar
20.Sauzedde, F., Elaissari, A., and Pichot, C.: Hydrophilic magnetic polymer latexes. 1. Adsorption of magnetic iron oxide nanoparticles onto various cationic latexes. Colloid Polym. Sci. 277, 846 (1999).CrossRefGoogle Scholar
21.Stauffer, D.: Scaling theory of percolation clusters. Phys. Rep. 54, 1 (1979).CrossRefGoogle Scholar
22.Sauzedde, F., Elaïssari, A., and Pichot, C.: Hydrophilic magnetic polymer latexes. 2. Encapsulation of adsorbed iron oxide nanoparticles. Colloid Polym. Sci. 277, 1041 (1999).CrossRefGoogle Scholar
23.Wei, J., Liu, J.H., and Li, S.M.: Electromagnetic and microwave absorption properties of Fe3O4 magnetic films plated on hollow glass spheres. J. Magn. Magn. Mater. 312, 414 (2007).CrossRefGoogle Scholar
24.Ni, S.B., Wang, X.H., Zhou, G., Yang, F., Wang, J.M., and He, D.Y.: Size controlled and morphology tuned fabrication of Fe3O4 nanocrystals and their magnetic properties. J. Alloy. Comp. 489, 252 (2010).CrossRefGoogle Scholar
25.Xu, P., Han, X., Jiang, J., Wang, X., Li, X., and Wen, A.: Synthesis and characterization of novel coralloid polyaniline/BaFe12O19 nanocomposites. J. Phys. Chem. C 111, 12603 (2007).CrossRefGoogle Scholar
26.Xu, P., Han, X., Wang, C., Zhou, D., Lv, Z., Wen, A., Wang, X., and Zhang, B.: Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites. J. Phys. Chem. B 112, 10443 (2008).CrossRefGoogle ScholarPubMed
27.Kwon, H.J., Shin, J.Y., and Oh, J.H.: The microwave absorbing and resonance phenomena of Y-type hexagonal ferrite microwave absorbers. J. Appl. Phys. 75, 6109 (1994).CrossRefGoogle Scholar
28.Stafström, S., Brédas, J.L., Epstein, A.J., Woo, H.S., Tanner, D.B., Huang, W.S., and MacDiarmid, A.G.: Polaron lattice in highly conducting polyaniline: Theoretical and optical studies. Phys. Rev. Lett. 59, 1464 (1987).CrossRefGoogle ScholarPubMed
29.Zuo, F., Angelopoulos, M., MacDiarmid, A.G., and Epstein, A.J.: AC conductivity of emeraldine polymer. Phys. Rev. B 39, 3570 (1989).CrossRefGoogle ScholarPubMed