Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T10:10:19.975Z Has data issue: false hasContentIssue false

Exploration of interactions of ‘blood-nano interface’ of carbon-based nanomaterials for biomedical applications

Published online by Cambridge University Press:  31 May 2019

Vishal Singh
Affiliation:
Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, Uttar Pradesh 211012, India
Aparajita Basu
Affiliation:
Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, Uttar Pradesh 211012, India
P.M. Shivapriya
Affiliation:
Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, Uttar Pradesh 211012, India
Pritish Kumar Varadwaj
Affiliation:
Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, Uttar Pradesh 211012, India
Sintu Kumar Samanta*
Affiliation:
Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, Uttar Pradesh 211012, India
Amaresh Kumar Sahoo*
Affiliation:
Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, Uttar Pradesh 211012, India
*
a)Address all correspondence to these authors. e-mail: samantasintu@iiita.ac.in
Get access

Abstract

One of the most promising nanoscale materials which fascinated researchers for the last few decades owing to its unique optoelectronics and physicochemical properties are carbon-based nanomaterials (CBNs). Various forms of CBNs have been developed such as single and multi-walled carbon nanotubes, graphene, fullerenes, nanodiamonds, and fluorescent carbon quantum dots (C-Dots) whereas each form is having its own exceptional properties owing to its dimensionalities and architectures. The advent of these unique classes of nanoscale materials opens up a spectrum of new opportunities and possibilities in employing these in emerging areas of biomedical. However, successful biomedical applications greatly rely on the likelihood of the comprehensive understanding of physicochemical interactions and biological responses of CBNs. Herein, we have tried to explore the ‘blood-CBNs’ interface by including the findings of recent studies. The role of surface modifications and functionalization in order to mitigate the adverse outcomes has also been incorporated.

Type
REVIEW
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

c)

These authors contributed equally to this work.

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

Duncan, R. and Gaspar, R.: Nanomedicine(s) under the microscope. Mol. Pharm. 8, 2101 (2011).CrossRefGoogle ScholarPubMed
Mahon, E., Salvati, A., Baldelli Bombelli, F., Lynch, I., and Dawson, K.A.: Designing the nanoparticle–biomolecule interface for “targeting and therapeutic delivery”. J. Controlled Release 161, 164 (2012).CrossRefGoogle Scholar
Liu, J., Cui, L., and Losic, D.: Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 9, 9243 (2013).CrossRefGoogle ScholarPubMed
Goenka, S., Sant, V., and Sant, S.: Graphene-based nanomaterials for drug delivery and tissue engineering. J. Controlled Release 173, 75 (2014).CrossRefGoogle ScholarPubMed
Baughman, R.H.: Carbon nanotubes—The route toward applications. Science 297, 787 (2002).CrossRefGoogle Scholar
Zhang, M.: Strong, transparent, multifunctional, carbon nanotube sheets. Science 309, 1215 (2005).CrossRefGoogle ScholarPubMed
Kam, N.W.S., O’Connell, M., Wisdom, J.A., and Dai, H.: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. U. S. A. 102, 11600 (2005).CrossRefGoogle ScholarPubMed
Ilinskaya, A.N. and Dobrovolskaia, M.A.: Nanoparticles and the blood coagulation system. Part II: Safety concerns. Nanomedicine 8, 969 (2013).CrossRefGoogle ScholarPubMed
Sobot, D., Mura, S., and Couvreur, P.: Nanoparticles: Blood Components Interactions. Encyclopedia of Polymeric, Nanomaterials, Kobayashi, S. and Müllen, K., eds. (Springer, Berlin, Heidelberg, 2014); pp. 110.Google Scholar
Yang, K., Wan, J., Zhang, S., Zhang, Y., Lee, S-T., and Liu, Z.: In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 5, 516 (2011).CrossRefGoogle ScholarPubMed
Singh, S.K., Singh, M.K., Kulkarni, P.P., Sonkar, V.K., Grácio, J.J.A., and Dash, D.: Amine-modified graphene: Thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano 6, 2731 (2012).CrossRefGoogle ScholarPubMed
Awasthi, K., Singh, D.P., Singh, S.K., Dash, D., and Srivastava, O.N.: Attachment of biomolecules (protein and DNA) to amino-functionalized carbon nanotubes. N. Carbon Mater. 24, 301 (2009).CrossRefGoogle Scholar
Yang, W., Thordarson, P., Gooding, J.J., Ringer, S.P., and Braet, F.: Carbon nanotubes for biological and biomedical applications. Nanotechnology 18, 412001 (2007).CrossRefGoogle Scholar
Schulz-Dobrick, M., Sarathy, K.V., and Jansen, M.: Surfactant-free synthesis and functionalization of gold nanoparticles. J. Am. Chem. Soc. 127, 12816 (2005).CrossRefGoogle ScholarPubMed
Neouze, M.A. and Schubert, U.: Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatsh. Chem. 139, 183 (2008).CrossRefGoogle Scholar
Ruckenstein, E. and Li, Z.F.: Surface modification and functionalization through the self-assembled monolayer and graft polymerization. Adv. Colloid Interface Sci. 113, 43 (2005).CrossRefGoogle ScholarPubMed
Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).CrossRefGoogle Scholar
Bussy, C., Methven, L., and Kostarelos, K.: Hemotoxicity of carbon nanotubes. Adv. Drug Delivery Rev. 65, 2127 (2013).CrossRefGoogle ScholarPubMed
Salvador-Morales, C., Flahaut, E., Sim, E., Sloan, J., Green, M.L.H., and Sim, R.B.: Complement activation and protein adsorption by carbon nanotubes. Mol. Immunol. 43, 193 (2006).CrossRefGoogle ScholarPubMed
Rybak-Smith, M.J. and Sim, R.B.: Complement activation by carbon nanotubes. Adv. Drug Delivery Rev. 63, 1031 (2011).CrossRefGoogle ScholarPubMed
Ling, W.L., Biro, A., Bally, I., Tacnet, P., Deniaud, A., Doris, E., Frachet, P., Schoehn, G., Pebay-Peyroula, E., and Arlaud, G.J.: Proteins of the innate immune system crystallize on carbon nanotubes but are not activated. ACS Nano 5, 730 (2011).CrossRefGoogle Scholar
Salvador-Morales, C., Basiuk, E.V., Basiuk, V.A., Green, M.L.H., and Sim, R.B.: Effects of covalent functionalization on the biocompatibility characteristics of multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 8, 2347 (2008).CrossRefGoogle ScholarPubMed
Andersen, A.J., Robinson, J.T., Dai, H., Hunter, A.C., Andresen, T.L., and Moghimi, S.M.: Single-walled carbon nanotube surface control of complement recognition and activation. ACS Nano 7, 1108 (2013).CrossRefGoogle ScholarPubMed
Andersen, A.J., Windschiegl, B., Ilbasmis-Tamer, S., Degim, I.T., Hunter, A.C., Andresen, T.L., and Moghimi, S.M.: Complement activation by PEG-functionalized multi-walled carbon nanotubes is independent of PEG molecular mass and surface density. Nanomedicine 9, 469 (2013).CrossRefGoogle ScholarPubMed
Hussain, S., Vanoirbeek, J.A.J., and Hoet, P.H.M.: Interactions of nanomaterials with the immune system. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 4, 169 (2012).Google ScholarPubMed
Mitchell, L.A., Gao, J., Wal, R.V., Gigliotti, A., Burchiel, S.W., and McDonald, J.D.: Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol. Sci. 100, 203 (2007).CrossRefGoogle ScholarPubMed
Somani, P.R., Somani, S.P., and Umeno, M.: Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 430, 56 (2006).CrossRefGoogle Scholar
Liu, H. and Liu, Y.: Controlled chemical synthesis in CVD graphene. Phys. Sci. Rev. 2, 20160107 (2017).Google Scholar
Paton, K.R., Varrla, E., Backes, C., Smith, R.J., Khan, U., O’Neill, A., Boland, C., Lotya, M., Istrate, O.M., King, P., Higgins, T., Barwich, S., May, P., Puczkarski, P., Ahmed, I., Moebius, M., Pettersson, H., Long, E., Coelho, J., O’Brien, S.E., McGuire, E.K., Sanchez, B.M., Duesberg, G.S., McEvoy, N., Pennycook, T.J., Downing, C., Crossley, A., Nicolosi, V., and Coleman, J.N.: Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624 (2014).CrossRefGoogle ScholarPubMed
Sasidharan, A., Panchakarla, L.S., Sadanandan, A.R., Ashokan, A., Chandran, P., Girish, C.M., Menon, D., Nair, S.V., Rao, C.N.R., and Koyakutty, M.: Hemocompatibility and macrophage response of pristine and functionalized graphene. Small 8, 1251 (2012).CrossRefGoogle ScholarPubMed
Li, Y., Yuan, H., von dem Bussche, A., Creighton, M., Hurt, R.H., Kane, A.B., and Gao, H.: Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. U. S. A. 110, 12295 (2013).CrossRefGoogle ScholarPubMed
Russier, J., Treossi, E., Scarsi, A., Perrozzi, F., Dumortier, H., Ottaviano, L., Meneghetti, M., Palermo, V., and Bianco, A.: Evidencing the mask effect of graphene oxide: A comparative study on primary human and murine phagocytic cells. Nanoscale 5, 11234 (2013).CrossRefGoogle ScholarPubMed
Li, Y., Liu, Y., Fu, Y., Wei, T., Le Guyader, L., Gao, G., Liu, R-S., Chang, Y-Z., and Chen, C.: The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33, 402 (2012).CrossRefGoogle ScholarPubMed
Zhi, X., Fang, H., Bao, C., Shen, G., Zhang, J., Wang, K., Guo, S., Wan, T., and Cui, D.: The immunotoxicity of graphene oxides and the effect of PVP-coating. Biomaterials 34, 5254 (2013).CrossRefGoogle ScholarPubMed
Ni, G., Wang, Y., Wu, X., Wang, X., Chen, S., and Liu, X.: Graphene oxide absorbed anti-IL10R antibodies enhance LPS induced immune responses in vitro and in vivo. Immunol. Lett. 148, 126 (2012).CrossRefGoogle ScholarPubMed
Tan, X., Feng, L., Zhang, J., Yang, K., Zhang, S., Liu, Z., and Peng, R.: Functionalization of graphene oxide generates a unique interface for selective serum protein interactions. ACS Appl. Mater. Interfaces 5, 1370 (2013).CrossRefGoogle ScholarPubMed
Chowdhury, S.M., Fang, J., and Sitharaman, B.: Interaction of graphene nanoribbons with components of the blood vascular system. Future Sci. OA 1, FSO19 (2015).CrossRefGoogle ScholarPubMed
Mona, J., Kuo, C-J., Perevedentseva, E., Priezzhev, A.V., and Cheng, C-L.: Adsorption of human blood plasma on nanodiamond and its influence on activated partial thromboplastin time. Diamond Relat. Mater. 39, 73 (2013).CrossRefGoogle Scholar
Perevedentseva, E.V., Su, F.Y., Su, T.H., Lin, Y.C., Cheng, C.L., Karmenyan, A.V., Priezzhev, A.V., and Lugovtsov, A.E.: Laser-optical investigation of the effect of diamond nanoparticles on the structure and functional properties of proteins. Quantum Electron. 40, 1089 (2011).CrossRefGoogle Scholar
Lück, M., Paulke, B.R., Schröder, W., Blunk, T., and Müller, R.H.: Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. J. Biomed. Mater. Res., Part B 39, 478 (1998).3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Green, R.J., Davies, M.C., Roberts, C.J., and Tendler, S.J.: Competitive protein adsorption as observed by surface plasmon resonance. Biomaterials 20, 385 (1999).CrossRefGoogle ScholarPubMed
Wasdo, S.C., Barber, D.S., Denslow, N.D., Powers, K.W., Palazuelos, M., Stevens, S.M. Jr., Moudgil, B.M., and Roberts, S.M.: Differential binding of serum proteins to nanoparticles. Int. J. Nanotechnol. 5, 92 (2008).CrossRefGoogle Scholar
Tsai, L.W., Lin, Y-C., Perevedentseva, E., Lugovtsov, A., Priezzhev, A., and Cheng, C-L.: Nanodiamonds for medical applications: Interaction with blood in vitro and in vivo. Int. J. Mol. Sci. 17, 1111 (2016).CrossRefGoogle ScholarPubMed
Donkor, A.D., Su, Z., Mandal, H.S., Jin, X., and Tang, X.S.: Carbon nanotubes inhibit the hemolytic activity of the pore-forming toxin pyolysin. Nano Res. 2, 517 (2009).CrossRefGoogle Scholar
Sachar, S. and Saxena, R.K.: Cytotoxic effect of poly-dispersed single walled carbon nanotubes on erythrocytes in vitro and in vivo. PLoS One 6, e22032 (2011).CrossRefGoogle ScholarPubMed
Guo, M., Li, D., Zhao, M., Zhang, Y., Deng, X., Geng, D., Li, R., Sun, X., Gu, H., and Wan, R.: NH2+ implantations induced superior hemocompatibility of carbon nanotubes. Nanoscale Res. Lett. 8, 205 (2013).CrossRefGoogle ScholarPubMed
Meng, J., Cheng, X., Liu, J., Zhang, W., Li, X., Kong, H., and Xu, H.: Effects of long and short carboxylated or aminated multiwalled carbon nanotubes on blood coagulation. PLoS One 7, e38995 (2012).CrossRefGoogle ScholarPubMed
Zhang, X., Yin, J., Peng, C., Hu, W., Zhu, Z., Li, W., Fan, C., and Huang, Q.: Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon 49, 986 (2011).CrossRefGoogle Scholar
Crouzier, T., Nimmagadda, A., Nollert, M.U., and McFetridge, P.S.: Modification of single walled carbon nanotube surface chemistry to improve aqueous solubility and enhance cellular interactions. Langmuir 24, 13173 (2008).CrossRefGoogle ScholarPubMed
Lin, Y.C., Tsai, L-W., Perevedentseva, E., Chang, H-H., Lin, C-H., Sun, D-S., Lugovtsov, A.E., Priezzhev, A., Mona, J., and Cheng, C-L.: The influence of nanodiamond on the oxygenation states and micro rheological properties of human red blood cells in vitro. J. Biomed. Opt. 17, 101512 (2012).CrossRefGoogle ScholarPubMed
Li, H-C., Hsieh, F-J., Chen, C-P., Chang, M-Y., Hsieh, P.C.H., Chen, C-C., Hung, S-U., Wu, C-C., and Chang, H-C.: The hemocompatibility of oxidized diamond nanocrystals for biomedical applications. Sci. Rep. 3, 3044 (2013).CrossRefGoogle ScholarPubMed
Santacruz-Gomez, K., Silva-Campa, E., Melendrez-Amavizca, R., Teran Arce, F., Mata-Haro, V., Landon, P.B., Zhang, C., Pedroza-Montero, M., and Lal, R.: Carboxylated nanodiamonds inhibit γ-irradiation damage of human red blood cells. Nanoscale 8, 7189 (2016).CrossRefGoogle ScholarPubMed
Pescatori, M., Bedognetti, D., Venturelli, E., Ménard-Moyon, C., Bernardini, C., Muresu, E., Piana, A., Maida, G., Manetti, R., Sgarrella, F., Bianco, A., and Delogu, L.G.: Functionalized carbon nanotubes as immunomodulator systems. Biomaterials 34, 4395 (2013).CrossRefGoogle ScholarPubMed
Palomäki, J., Välimäki, E., Sund, J., Vippola, M., Clausen, P.A., Jensen, K.A., Savolainen, K., Matikainen, S., and Alenius, H.: Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 5, 6861 (2011).CrossRefGoogle ScholarPubMed
Yang, M., Flavin, K., Kopf, I., Radics, G., Hearnden, C.H.A., McManus, G.J., Moran, B., Villalta-Cerdas, A., Echegoyen, L.A., Giordani, S., and Lavelle, E.C.: Functionalization of carbon nanoparticles modulates inflammatory cell recruitment and NLRP3 inflammasome activation. Small 9, 4194 (2013).CrossRefGoogle ScholarPubMed
Puzyr, A.P., Tarskikh, S.V., Makarskaya, G.V., Chiganova, G.A., Larionova, I.S., Detkov, P.Y., and Bondar, V.S.: Damaging effect of detonation diamonds on human white and red blood cells in vitro. Dokl. Biochem. Biophys. 385, 201 (2002).CrossRefGoogle ScholarPubMed
Ghoneum, M., Ghoneum, A., and Gimzewski, J.: Nanodiamond and nanoplatinum liquid, DPV576, activates human monocyte-derived dendritic cells in vitro. Anticancer Res. 30, 4075 (2010).Google ScholarPubMed
Karpukhin, A.V., Avkhacheva, N.V., Yakovlev, R.Y., Kulakova, I.I., Yashin, V.A., Lisichkin, G.V., and Safronova, V.G.: Effect of detonation nanodiamonds on phagocyte activity. Cell Biol. Int. 35, 727 (2011).CrossRefGoogle ScholarPubMed
Chowdhury, S.M., Kanakia, S., Toussaint, J.D., Frame, M.D., Dewar, A.M., Shroyer, K.R., Moore, W., and Sitharaman, B.: In vitro hematological and in vivo vasoactivity assessment of dextran functionalized graphene. Sci. Rep. 3, 2584 (2013).CrossRefGoogle ScholarPubMed
Movat, H.Z., Weiser, W.J., Glynn, M.F., and Mustard, J.F.: Platelet phagocytosis and aggregation. J. Cell Biol. 27, 531 (1965).CrossRefGoogle ScholarPubMed
Frame, M.D., Dewar, A.M., Mullick Chowdhury, S., and Sitharaman, B.: Vasoactive effects of stable aqueous suspensions of single walled carbon nanotubes in hamsters and mice. Nanotoxicology 8, 867 (2014).CrossRefGoogle ScholarPubMed
Radomski, A., Jurasz, P., Alonso-Escolano, D., Drews, M., Morandi, M., Malinski, T., and Radomski, M.W.: Nanoparticle-induced platelet aggregation and vascular thrombosis. Br. J. Pharmacol. 146, 882 (2005).CrossRefGoogle ScholarPubMed
Bihari, P., Holzer, M., Praetner, M., Fent, J., Lerchenberger, M., Reichel, C.A., Rehberg, M., Lakatos, S., and Krombach, F.: Single-walled carbon nanotubes activate platelets and accelerate thrombus formation in the microcirculation. Toxicology 269, 148 (2010).CrossRefGoogle ScholarPubMed
Semberova, J., De Paoli Lacerda, S.H., Simakova, O., Holada, K., Gelderman, M.P., and Simak, J.: Carbon nanotubes activate blood platelets by inducing extracellular Ca2+ influx sensitive to calcium entry inhibitors. Nano Lett. 9, 3312 (2009).CrossRefGoogle ScholarPubMed
Lacerda, S.H.D.P., Semberova, J., Holada, K., Simakova, O., Hudson, S.D., and Simak, J.: Carbon nanotubes activate store-operated calcium entry in human blood platelets. ACS Nano 5, 5808 (2011).CrossRefGoogle ScholarPubMed
Khandoga, A., Stoeger, T., Khandoga, A.G., Bihari, P., Karg, E., Ettehadieh, D., Lakatos, S., Fent, J., Schulz, H., and Krombach, F.: Platelet adhesion and fibrinogen deposition in murine microvessels upon inhalation of nanosized carbon particles. J. Thromb. Haemostasis 8, 1632 (2010).CrossRefGoogle ScholarPubMed
Khandoga, A., Stampfl, A., Takenaka, S., Schulz, H., Radykewicz, R., Kreyling, W., and Krombach, F.: Ultrafine particles exert prothrombotic but not inflammatory effects on the hepatic microcirculation in healthy mice in vivo. Circulation 109, 1320 (2004).CrossRefGoogle Scholar
Burke, A.R., Singh, R.N., Carroll, D.L., Owen, J.D., Kock, N.D., D’Agostino, R., Torti, F.M., and Torti, S.V.: Determinants of the thrombogenic potential of multiwalled carbon nanotubes. Biomaterials 32, 5970 (2011).CrossRefGoogle ScholarPubMed
Vakhrusheva, T.V., Gusev, A.A., Gusev, S.A., and Vlasova, I.I.: Albumin reduces thrombogenic potential of single-walled carbon nanotubes. Toxicol. Lett. 221, 137 (2013).CrossRefGoogle ScholarPubMed
Kumari, S., Singh, M.K., Singh, S.K., Grácio, J.J.A., and Dash, D.: Nanodiamonds activate blood platelets and induce thromboembolism. Nanomedicine 9, 427 (2014).CrossRefGoogle ScholarPubMed
Singh, S.K., Singh, M.K., Nayak, M.K., Kumari, S., Shrivastava, S., Grácio, J.J.A., and Dash, D.: Thrombus inducing property of atomically thin graphene oxide sheets. ACS Nano 5, 4987 (2011).CrossRefGoogle ScholarPubMed
Pacor, S., Grillo, A., Đorđević, L., Zorzet, S., Lucafò, M., Da Ros, T., Prato, M., and Sava, G.: Effects of two fullerene derivatives on monocytes and macrophages. BioMed Res. Int. 2015, 1 (2015).CrossRefGoogle ScholarPubMed
Vesnina, L.E., Mamontova, T.V., Mykytiuk, M.V., Kutsenko, L.O., Bobrova, N.O., Kutsenko, N.L., and Kaĭdashev, I.P.: The condition of lipid peroxidation in mice and the effect of fullerene C60 during immune response. Fiziolohichnyi Zh. 58, 19 (2012).Google ScholarPubMed
Lee, J., Mahendra, S., and Alvarez, P.J.J.: Nanomaterials in the construction industry: A review of their applications and environmental health and safety considerations. ACS Nano 4, 3580 (2010).CrossRefGoogle ScholarPubMed
Lee, V.S., Nimmanpipug, P., Aruksakunwong, O., Promsri, S., Sompornpisut, P., and Hannongbua, S.: Structural analysis of lead fullerene-based inhibitor bound to human immunodeficiency virus type 1 protease in solution from molecular dynamics simulations. J. Mol. Graphics Modell. 26, 558 (2007).CrossRefGoogle ScholarPubMed
Magoulas, G.E., Garnelis, T., Athanassopoulos, C.M., Papaioannou, D., Mattheolabakis, G., Avgoustakis, K., and Hadjipavlou-Litina, D.: Synthesis and antioxidative/anti-inflammatory activity of novel fullerene–polyamine conjugates. Tetrahedron 68, 7041 (2012).CrossRefGoogle Scholar
Ryan, J.J., Bateman, H.R., Stover, A., Gomez, G., Norton, S.K., Zhao, W., Schwartz, L.B., Lenk, R., and Kepley, C.L.: Fullerene nanomaterials inhibit the allergic response. J. Immunol. 179, 665 (2007).CrossRefGoogle ScholarPubMed
Monti, D., Moretti, L., Salvioli, S., Straface, E., Malorni, W., Pellicciari, R., Schettini, G., Bisaglia, M., Pincelli, C., Fumelli, C., Bonafè, M., and Franceschi, C.: C60 carboxyfullerene exerts a protective activity against oxidative stress-induced apoptosis in human peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun. 277, 711 (2000).CrossRefGoogle ScholarPubMed
Gelderman, M.P., Simakova, O., Clogston, J.D., Patri, A.K., Siddiqui, S.F., Vostal, A.C., and Simak, J.: Adverse effects of fullerenes on endothelial cells: Fullerenol C60(OH)24 induced tissue factor and ICAM-I membrane expression and apoptosis in vitro. Int. J. Nanomed. 3, 59 (2008).Google ScholarPubMed
Bunz, H., Plankenhorn, S., and Klein, R.: Effect of buckminsterfullerenes on cells of the innate and adaptive immune system: An in vitro study with human peripheral blood mononuclear cells. Int. J. Nanomed. 7, 4571 (2012).Google Scholar
Liu, Y., Jiao, F., Qiu, Y., Li, W., Qu, Y., Tian, C., Li, Y., Bai, R., Lao, F., Zhao, Y., Chai, Z., and Chen, C.: Immunostimulatory properties and enhanced TNF-alpha mediated cellular immunity for tumor therapy by C60(OH)20 nanoparticles. Nanotechnology 20, 415102 (2009).CrossRefGoogle ScholarPubMed
Xu, X., Ray, R., Gu, Y., Ploehn, H.J., Gearheart, L., Raker, K., and Scrivens, W.A.: Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736 (2004).CrossRefGoogle ScholarPubMed
Lategan, K., Fowler, J., Bayati, M., Fidalgo de Cortalezzi, M., and Pool, E.: The effects of carbon dots on immune system biomarkers, using the murine macrophage cell line RAW 264.7 and human whole blood cell cultures. Nanomaterials 8, 388 (2018).CrossRefGoogle ScholarPubMed
Zheng, X.T., Ananthanarayanan, A., Luo, K.Q., and Chen, P.: Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 11, 1620 (2015).CrossRefGoogle ScholarPubMed
Cao, L., Meziani, M.J., Sahu, S., and Sun, Y-P.: Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 46, 171 (2013).CrossRefGoogle ScholarPubMed
Wang, Y., Meng, Y., Wang, S., Li, C., Shi, W., Chen, J., Wang, J., and Huang, R.: Direct solvent-derived polymer-coated nitrogen-doped carbon nanodots with high water solubility for targeted fluorescence imaging of glioma. Small 11, 3575 (2015).CrossRefGoogle ScholarPubMed
Lundqvist, M., Stigler, J., Cedervall, T., Berggård, T., Flanagan, M.B., Lynch, I., Elia, G., and Dawson, K.: The evolution of the protein corona around nanoparticles: A test study. ACS Nano 5, 7503 (2011).CrossRefGoogle ScholarPubMed
Duan, G., Kang, S., Tian, X., Garate, J.A., Zhao, L., Ge, C., and Zhou, R.: Protein corona mitigates the cytotoxicity of graphene oxide by reducing its physical interaction with cell membrane. Nanoscale 7, 15214 (2015).CrossRefGoogle ScholarPubMed
Gao, N., Zhang, Q., Mu, Q., Bai, Y., Li, L., Zhou, H., Butch, E.R., Powell, T.B., Snyder, S.E., Jiang, G., and Yan, B.: Steering carbon nanotubes to scavenger receptor recognition by nanotube surface chemistry modification partially alleviates NFκB activation and reduces its immunotoxicity. ACS Nano 5, 4581 (2011).CrossRefGoogle ScholarPubMed
Mukherjee, S.P., Bondarenko, O., Kohonen, P., Andón, F.T., Brzicová, T., Gessner, I., Mathur, S., Bottini, M., Calligari, P., Stella, L., Kisin, E., Shvedova, A., Autio, R., Salminen-Mankonen, H., Lahesmaa, R., and Fadeel, B.: Macrophage sensing of single-walled carbon nanotubes via toll-like receptors. Sci. Rep. 8, 1115 (2018).CrossRefGoogle ScholarPubMed
Asuri, P., Karajanagi, S.S., Vertegel, A.A., Dordick, J.S., and Kane, R.S.: Enhanced stability of enzymes adsorbed onto nanoparticles. J. Nanosci. Nanotechnol. 7, 1675 (2007).CrossRefGoogle ScholarPubMed