Skip to main content

Fabrication and determination of growth regimes of various Pd NPs based on the control of deposition amount and temperature on c-plane GaN

  • Mao Sui (a1), Sundar Kunwar (a1), Puran Pandey (a1), Quanzhen Zhang (a1), Ming-Yu Li (a1) and Jihoon Lee (a2)...

Palladium (Pd) nanostructures have been actively adapted for various applications and their properties and applicability closely depend on their shape, size, and density. In this paper, the evolution of self-assembled Pd nanostructures on the hexagonal c-plane GaN is presented by the systematical control of Pd deposition amount (DA) at distinctive temperatures. Pd nanostructures of various configurations, sizes, and densities are demonstrated based on the solid-state dewetting of Pd thin films and a clear distinction in the growth regimes is observed. Three growth regimes are clearly observed depending on the variation of DA, i.e., (i) the agglomeration of Pd nanoparticles, (ii) the coalescence of wiggly Pd nanostructures, and finally (iii) the growth of nanovoids and layers. Owing to the temperature-dependent dewetting process, the growth regimes are markedly shifted, resulting in the distinctive Pd nanostructures within the identical DA range. The results are discussed in conjunction with the surface diffusion, Volmer–Weber and coalescence growth model, and surface/interface energy minimization mechanism. In addition, the evolution of optical properties, emission band, and lattice properties are probed by reflectance, photoluminescence, and Raman spectroscopy, which exhibit varying spectral intensity and peak positions according to the surface morphology of Pd nanostructures.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Jürgen Eckert

Hide All
1. Wolfe, J.P., Singer, R.A., Yang, B.H., and Buchwald, S.L.: Highly active palladium catalysts for Suzuki coupling reactions. J. Am. Chem. Soc. 121, 9550 (1999).
2. Reetz, M.T. and Westermann, E.: Phosphane-free palladium-catalyzed coupling reactions: The decisive role of Pd nanoparticles. Angew. Chem., Int. Ed. 39, 165 (2000).
3. Beletskaya, I.P. and Cheprakov, A.V.: The Heck reaction as a sharpening stone of palladium catalysis. Chem. Rev. 100, 3009 (2000).
4. Tian, N., Zhou, Z.Y., Yu, N.F., Wang, L.Y., and Sun, S.G.: Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electro-oxidation. J. Am. Chem. Soc. 132, 7580 (2010).
5. Mori, K., Hara, T., Mizugaki, T., Ebitani, K., and Kaneda, K.: Hydroxyapatite-supported palladium nanoclusters: A highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. J. Am. Chem. Soc. 126, 10657 (2004).
6. Sales, E.A., de Jesus Mendes, M., and Bozon-Verduraz, F.: Liquid-phase selective hydrogenation of hexa-1,5-diene and hexa-1,3-diene on palladium catalysts. Effect of tin and silver addition. J. Catal. 195, 96 (2000).
7. Vilé, G., Albani, D., Nachtegaal, M., Chen, Z., Dontsova, D., Antonietti, M., Lopez, N., and Perez-Ramirez, J.: A stable single-site palladium catalyst for hydrogenations. Angew. Chem., Int. Ed. 54, 11265 (2015).
8. Cheon, Y.E. and Suh, M.P.: Enhanced hydrogen storage by palladium nanoparticles fabricated in a redox-active metal-organic framework. Angew. Chem. 121, 2943 (2009).
9. Pundt, A., Sachs, C., Winter, M., Reetz, M.T., Fritsch, D., and Kirchheim, R.: Hydrogen sorption in elastically soft stabilized Pd-clusters. J. Alloys Compd. 293, 480483 (1999).
10. Shan, X., Payer, J.H., Wainright, J.S., and Dudik, L.: A micro-fabricated hydrogen storage module with sub-atmospheric activation and durability in air exposure. J. Power Sources 196, 827 (2011).
11. Du, Y., Xue, Q., Zhang, Z., Xia, F., Li, J., and Han, Z.: Hydrogen gas sensing properties of Pd/aC:Pd/SiO2/Si structure at room temperature. Sens. Actuators, B 186, 796801 (2013).
12. Lim, S.H., Radha, B., Chan, J.Y., Saifullah, M.S., Kulkarni, G.U., and Ho, G.W.: Flexible palladium-based H2 sensor with fast response and low leakage detection by nanoimprint lithography. ACS Appl. Mater. Interfaces 5, 7274 (2013).
13. Šlouf, M., Pavlova, E., Bhardwaj, M., Pleštil, J., Onderková, H., Philimonenko, A.A., and Hozák, P.: Preparation of stable Pd nanoparticles with tunable size for multiple immunolabeling in biomedicine. Mater. Lett. 65, 1197 (2011).
14. Gavia, D.J. and Shon, Y.S.: Controlling surface ligand density and core size of alkanethiolate-capped Pd nanoparticles and their effects on catalysis. Langmuir 28, 14502 (2012).
15. Le Ru, E. and Etchegoin, P.: Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects; Introduction to Plasmons and Plasmonics (Elsevier, Amsterdam, the Netherlands 2008); ch. 3, p. 128.
16. Langhammer, C., Yuan, Z., Zorić, I., and Kasemo, B.: Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 6, 833 (2006).
17. Cui, L., Wang, A., Wu, D.Y., Ren, B., and Tian, Z.Q.: Shaping and shelling Pt and Pd nanoparticles for ultraviolet laser excited surface-enhanced Raman scattering. J. Phys. Chem. C 112, 17618 (2008).
18. Cui, L., Mahajan, S., Cole, R.M., Soares, B., Bartlett, P.N., Baumberg, J.J., Hayward, I.P., Ren, B., Russell, A.E., and Tian, Z.Q.: UV SERS at well-ordered Pd sphere segment void (SSV) nanostructures. Phys. Chem. Chem. Phys. 11, 1023 (2009).
19. Thompson, C.V.: Solid-state dewetting of thin films. Annu. Rev. Mater. Res. 42, 399 (2012).
20. Zhao, X., Lee, U.J., and Lee, K.H.: Dewetting behavior of Au films on porous substrates. Thin Solid Films 519, 706 (2010).
21. Wang, D. and Schaaf, P.: Solid state dewetting for fabrication of metallic nanoparticles and influences of nanostructured substrates and dealloying. Phys. Status Solidi A 210, 1544 (2013).
22. Ruffino, F. and Grimaldi, M.G.: Dewetting of template-confined Au films on SiC surface: From patterned films to patterned arrays of nanoparticles. Vacuum 99, 28 (2014).
23. Danielson, D.T., Sparacin, D.K., Michel, J., and Kimerling, L.C.: Surface-energy-driven dewetting theory of silicon-on-insulator agglomeration. J. Appl. Phys. 100, 083507 (2006).
24. Ruffino, F., Canino, A., Grimaldi, M.G., Giannazzo, F., Bongiorno, C., Roccaforte, F., and Raineri, V.: Self-organization of gold nanoclusters on hexagonal SiC and SiO2 surfaces. J. Appl. Phys. 101, 064306 (2007).
25. Volmer, M. and Weber, A.: Nucleus formation in supersaturated systems. Z. Phys. Chem. 119, 277 (1926).
26. Venables, J.A., Spiller, G.D.T., and Hanbucken, M.: Nucleation and growth of thin films. Rep. Prog. Phys. 47, 399 (1984).
27. Sui, M., Li, M.Y., Kim, E.S., and Lee, J.H.: Mini droplets to super droplets: Evolution of self-assembled Au droplets on GaAs (111) B and (110). J. Appl. Crystallogr. 47, 505 (2014).
28. Li, C.R., Lu, N.P., Mei, J., Dong, W.J., Zheng, Y.Y., Gao, L., Tsukamoto, K., and Cao, Z.X.: Polyhedral to nearly spherical morphology transformation of silver microcrystals grown from vapor phase. J. Cryst. Growth 314, 324 (2011).
29. Ruffino, F. and Grimaldi, M.G.: Atomic force microscopy study of the growth mechanisms of nanostructured sputtered Au film on Si(111): Evolution with film thickness and annealing time. J. Appl. Phys. 107, 104321 (2010).
30. Ruffino, F. and Grimaldi, M.G.: Island-to-percolation transition during the room-temperature growth of sputtered nanoscale Pd films on hexagonal SiC. J. Appl. Phys. 107, 074301 (2010).
31. Sui, M., Pandey, P., Li, M.Y., Zhang, Q., Kunwar, S., and Lee, J.H.: Tuning the configuration of Au nanostructures: From vermiform-like, rod-like, triangular, hexagonal, to polyhedral nanostructures on c-plane GaN. J. Mater. Sci. 52, 391 (2017).
32. Pandey, P., Sui, M., Zhang, Q., Li, M.Y., Kunwar, S., and Lee, J.H.: Systematic control of the size, density and configuration of Pt nanostructures on sapphire (0001) by the variation of deposition amount and dwelling time. Appl. Surf. Sci. 368, 198 (2016).
33. Li, M.Y., Sui, M., Pandey, P., Zhang, Q., Kim, E.S., and Lee, J.H.: Systematic control of self-assembled Au nanoparticles and nanostructures through the variation of deposition amount, annealing duration, and temperature on Si(111). Nanoscale Res. Lett. 10, 380 (2015).
34. Lee, D., Li, M.Y., Sui, M., Zhang, Q., Pandey, P., Kim, E.S., and Lee, J.H.: Observation of shape, configuration, and density of Au nanoparticles on various GaAs surfaces via deposition amount, annealing temperature, and dwelling time. Nanoscale Res. Lett. 10, 240 (2015).
35. Lian, C.X., Li, X.Y., and Liu, J.: Optical anisotropy of wurtzite GaN on sapphire characterized by spectroscopic ellipsometry. Semicond. Sci. Technol. 19, 417 (2003).
36. Fabian, M., Lewis, E., Newe, T., and Lochmann, S.: Optical fibre cavity for ring-down experiments with low coupling losses. Meas. Sci. Technol. 21, 094034 (2010).
37. Yannopapas, V.: Periodic arrays of film-coupled cubic nanoantennas as tunable plasmonic metasurfaces. Photonics 2, 270 (2015).
38. Leong, K.H., Chu, H.Y., Ibrahim, S., and Saravanan, P.: Palladium nanoparticles anchored to anatase TiO2 for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity. Beilstein J. Nanotechnol. 6, 428 (2015).
39. Mandal, M., Kundu, S., Ghosh, S.K., and Pal, T.: Micelle-mediated UV-photoactivation route for the evolution of Pd core–Au shell and Pd core–Ag shell bimetallics from photogenerated Pd nanoparticles. J. Photochem. Photobiol., A 167, 17 (2004).
40. Li, X. and Wang, Y.: Structure and photoluminescence properties of Ag-coated ZnO nano-needles. J. Alloys Compd. 509, 5765 (2011).
41. Liang, Y., Guo, N., Li, L., Li, R., Ji, G., and Gan, S.: Facile synthesis of Ag/ZnO micro-flowers and their improved ultraviolet and visible light photocatalytic activity. New J. Chem. 40, 1587 (2016).
42. Zhang, L., Yu, J., Hao, X., Wu, Y., Dai, Y., Shao, Y., Zhang, H., and Tian, Y.: Influence of stress in GaN crystals grown by HVPE on MOCVD-GaN/6H-SiC substrate. Sci. Rep. 4, 4179 (2014).
43. Aumer, M.E., LeBoeuf, S.F., Bedair, S.M., Aumer, M.E., Smith, M., Lin, J.Y., and Jiang, H.X.: Effects of tensile and compressive strain on the luminescence properties of AlInGaN/InGaN quantum well structures. Appl. Phys. Lett. 77, 821 (2000).
44. Ishioka, K., Kato, K., Ohashi, N., Haneda, H., Kitajima, M., and Petek, H.: The effect of n-and p-type doping on coherent phonons in GaN. J. Phys. C: Solid State Phys. 25, 205404 (2013).
45. Eason, R.: Pulsed laser deposition of thin films: Applications-led growth of functional materials. In Growth Kinetics During Pulsed Laser Deposition, Eason, R., ed. (John Wiley & Sons, USA, 2007); ch. 8, p. 178.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Sui supplementary material
Sui supplementary material

 Word (11.5 MB)
11.5 MB


Full text views

Total number of HTML views: 5
Total number of PDF views: 49 *
Loading metrics...

Abstract views

Total abstract views: 259 *
Loading metrics...

* Views captured on Cambridge Core between 17th July 2017 - 20th May 2018. This data will be updated every 24 hours.