Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-29T00:57:25.783Z Has data issue: false hasContentIssue false

Fabrication of a 33-layer optical reflection filter with stepwise graded refractive index profiles

Published online by Cambridge University Press:  31 January 2011

Xinrong Wang
Affiliation:
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan
Hiroshi Masumoto
Affiliation:
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan
Yoshihiro Someno
Affiliation:
Mechatronic Devices Division 1, ALPS Electric Co. Ltd., 6-1 Aza, Nishida Kakuda, Kakuda, Miyagi Prefecture, 981-1505, Japan
Lidong Chen
Affiliation:
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan
Toshio Hirai
Affiliation:
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan
Get access

Abstract

A novel optical multilayer filter characterized by symmetrically stepwise graded refractive index profiles and high optical performance was designed. This 33-layer TiO2–SiO2 filter was fabricated by helicon plasma sputtering. The prepared filter exhibited a sharp cutoff reflection band around the central wavelength of 1340 nm and wide pass regions with high transmittance. These results correspond well with calculated estimations. Symmetrically stepwise graded refractive index profiles were demonstrated to effectively contribute to suppression of the sidelobes and to be potentially applicable in the design of other filters.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Garito, A.F., Wang, J., and Gao, R., Science 281, 962 (1998).CrossRefGoogle Scholar
2.Lotz, H.G., Apl. Opt. 26, 4487 (1987).CrossRefGoogle Scholar
3.Perilloux, B.E., Appl. Opt. 37, 3527 (1998).CrossRefGoogle Scholar
4.Tan, M., Lin, Y., and Zhao, D., Appl. Opt. 36, 827 (1997).CrossRefGoogle Scholar
5.Bulkin, P.V., Swart, P.L., and Lacquet, B.M., J. Non-Cryst. Solids 187, 484 (1995).Google Scholar
6.Southwell, W.H., Appl. Opt. 24, 457 (1985).CrossRefGoogle Scholar
7.Convertino, A., Valentini, A., Giugno, P.V., and Cingolani, R., Appl. Phys. Lett. 70, 2799 (1997).CrossRefGoogle Scholar
8.Thomsen, M. and Wu, Z.L., Appl. Opt. 36, 307 (1997).CrossRefGoogle Scholar
9.Popov, K.V., Dobrowolski, J.A., Tikhonravov, A.V., and Sullivan, B.T., Appl. Opt. 36, 2139 (1997).Google Scholar
10.Southwell, W.H., Appl. Opt. 28, 5091 (1989).CrossRefGoogle Scholar
11.Bovard, B.G., Appl. Opt. 32, 5427 (1993).Google Scholar
12.Verly, P.G., Appl. Opt. 34, 688 (1995).Google Scholar
13.Boivin, G. and St-Germain, D., Appl. Opt. 26, 4209 (1987).CrossRefGoogle Scholar
14.Ouellette, M.F., Lang, R.V., Yan, K.L., Bertram, R.W., Owles, R.S., and Vincent, D., J. Vac. Sci. Technol. A9, 1188 (1991).CrossRefGoogle Scholar
15.Donovan, E.P., Vechten, D.V., Kahn, A.D., Carosella, C.A., and Hubler, G.K., Appl. Opt. 28, 2940 (1989).CrossRefGoogle Scholar
16.Partlow, D.P. and O'Keeffe, T.W., Appl. Opt. 29, 1526 (1990).CrossRefGoogle Scholar
17.Lim, S., Ryu, J.H., Wager, J.F., and Plant, T.K., Thin Solid Films 245, 141 (1994).CrossRefGoogle Scholar
18.Wang, X., Masumoto, H., Someno, Y., and Hirai, T., Appl. Phys. Lett. 72, 3264 (1998).CrossRefGoogle Scholar
19.Wang, X., Masumoto, H., Someno, Y., Chen, L., and Hirai, T. (unpublished).Google Scholar
20.Fujihara, S., Optical Thin Films (Kyoritsu Press, Tokyo, 1985), p. 210.Google Scholar
21.Wang, X., Masumoto, H., Someno, Y., and Hirai, T., J. Vac. Sci. Technol. A 16, 2926 (1998).CrossRefGoogle Scholar