Skip to main content Accessibility help

Fabrication of flexible pressure sensors with microstructured polydimethylsiloxane dielectrics using the breath figures method

  • Sophie Miller (a1) and Zhenan Bao (a1)


Flexible touch sensors with high sensitivity show promise in biomedical diagnostics and for artificial “electronic skin” for robotics or prosthetic devices. For “electronic skin” applications, there exists a need for low-cost, scalable methods for producing pixels that sense both medium (10–100 kPa) and low pressures (<10 kPa). Here, the “breath figures” (BFs) method, a simple, self-assembly-based method for producing honeycomb-structured porous polymer films, was used to prepare pattern compressible, and microstructured dielectric layers for capacitive pressure sensors. Porous polystyrene BFs films served as molds for structuring polydimethylsiloxane dielectrics. Pressure sensing devices containing the BFs-molded dielectrics consistently gave pressure response with little hysteresis, high sensitivities at lower applied pressures, and improved sensitivity at higher pressures. Analysis of microstructure geometries and pressure sensor performance suggests that structures with higher aspect ratios (height-to-width) produce less hysteresis, and that less uniform, more polydisperse structures yield a more linear pressure response.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Zhao, X., Hua, Q., Yu, R., Zhang, Y., and Pan, C.: Flexible, stretchable and wearable multifunctional sensor array as artificial electronic skin for static and dynamic strain mapping. Adv. Electron. Mater. 1, 1500142 (2015).
2. Gerratt, A.P., Michaud, H.O., and Lacour, S.P.: Elastomeric electronic skin for prosthetic tactile sensation. Adv. Funct. Mater. 25, 2287 (2015).
3. Kim, D-H., Lu, N., Ma, R., Kim, Y-S., Kim, R-H., Wang, S., Wu, J., Won, S.M., Tao, H., Islan, A., Yu, K.J., Kim, T., Chowdhury, R., Ying, M., Xu, L., Li, M., Chung, H-J., Keum, H., McCormick, M., Liu, P., Zhang, Y-W., Omenetto, F.G., Huang, Y., Coleman, T., and Rogers, J.A.: Epidermal electronics. Science 333, 838 (2011).
4. Xu, T., Wang, W., Bian, X., Wang, X., Wang, X., Luo, J.K., and Dong, S.: High resolution skin-like sensor capable of sensing and visualizing various sensations and three dimensional shape. Sci. Rep. 5, 12997 (2015).
5. Someya, T., Sekitani, T., Iba, S., Kato, Y., Kawaguchi, H., and Sakurai, T.: A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. U. S. A. 101, 9966 (2004).
6. Hammock, M.L., Chortos, A., Tee, B.C-K., Tok, J.B-H., and Bao, Z.: 25th anniversary article: The evolution of electronic skin (E-Skin): A brief history, design considerations, and recent progress. Adv. Mater. 25, 5997 (2013).
7. Ramuz, M., Tee, B.C-K., Tok, J.B-H., and Bao, Z.: Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv. Mater. 24, 3223 (2012).
8. Wagner, S., Lacour, S.P., Jones, J., Hsu, P.I., Sturm, J.C., Li, T., and Suo, Z.: Electronic skin: Architecture and components. Phys. E 25, 326 (2004).
9. Pan, L., Chortos, A., Yu, G., Wang, Y., Issacson, S., Allen, R., Shi, Y., Dauskardt, R., and Bao, Z.: An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 5, 1 (2014).
10. Sergio, M., Manaresi, N., Campi, F., Canegallo, R., Tartagni, M., and Guerrieri, R.: A dynamically reconfigurable monolithic CMOS pressure sensor for smart fabric. IEEE J. Solid-State Circuits 38, 966 (2003).
11. Metzger, C., Gleisch, E., Meyer, J., Dansachmüller, M., Graz, I., Kaltenbrunner, M., Keplinger, C., Schwödiauer, R., and Bauer, S.: Flexible-foam-based capacitive sensor arrays for object detection at low cost. Appl. Phys. Lett. 92, 013506 (2008).
12. Lipomi, D.J., Vosgueritchian, M., Tee, B.C-K., Hellstrom, S.L., Lee, J.A., Fox, C.H., and Bao, Z.: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788 (2011).
13. Mannsfeld, S.C.B., Tee, B.C-K., Stoltenberg, R.M., Chen, C.V.H-H., Barman, S., Muir, B.V.O., Sokolov, A.N., Reese, C., and Bao, Z.: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9, 859 (2010).
14. Schwartz, G., Tee, B.C-K., Mei, J., Appleton, A.L., Kim, D.H., Wang, H., and Bao, Z.: Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013).
15. Tee, B.C-K., Chortos, A., Dunn, R.R., Schwartz, G., Eason, E., and Bao, Z.: Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv. Funct. Mater. 24, 5427 (2014).
16. Chen, L.Y., Tee, B.C-K., Chortos, A.L., Schwartz, G., Tse, V., Lipomi, D.J., Philip Wong, H-S., McConnell, M.V., and Bao, Z.: Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 5, 50285037 (2014).
17. Woo, S-J., Kong, J-H., Kim, D-G., and Kim, J-M.: A thin all-elastomeric capacitive pressure sensor array based on micro-contact printed elastic conductors. J. Mater. Chem. C 2, 4415 (2014).
18. Hernández-Guerrero, M. and Stenzel, M.H.: Honeycomb structured polymer films via breath figures. Polym. Chem. 3, 563 (2012).
19. Bunz, U.H.F.: Breath figures as a dynamic templating method for polymers and nanomaterials. Adv. Mater. 18, 973 (2006).
20. Croft, W.B.: Breath figures. Philos. Mag. Series 5 34, 180 (1892).
21. Sun, W., Shao, Z., and Ji, J.: Particle-assisted fabrication of honeycomb-structured hybrid films via breath figures method. Polymer 51, 4169 (2010).
22. Heng, L., Zhai, J., Zhao, Y., Xu, J., Sheng, X., and Jiang, L.: Enhancement of photocurrent generation by honeycomb structures in organic thin films. ChemPhysChem 7, 2520 (2006).
23. Yu, C., Zhai, J., Gao, X., Wan, M., Jiang, L., Li, T., and Li, Z.: Water-assisted fabrication of polyaniline honeycomb structure film. J. Phys. Chem. B 108, 4586 (2004).
24. Lu, Y., Ren, Y., Wang, L., Wang, X., and Li, C.: Template synthesis of conducting polyaniline composites based on honeycomb ordered polycarbonate film. Polymer 50, 2035 (2009).
25. Song, L., Bly, R.K., Wilson, J.N., Bakbak, S., Park, J.O., Srinivasarao, M., and Bunz, U.H.F.: Facile microstructuring of organic semiconducting polymers by the breath figure method: Hexagonally ordered bubble arrays in rigid rod-polymers. Adv. Mater. 16, 115 (2004).
26. Chen, S., Lu, X., Hu, Y., and Lu, Q.. Biomimetic honeycomb-patterned surface as the tunable cell adhesion scaffold. Biomater. Sci. 3, 85 (2014).
27. Ghannam, L., Manguian, M., François, J., and Billon, L.: A versatile route to functional biomimetic coatings: Ionomers for honeycomb-like structures. Soft Matter 3, 1492 (2007).
28. Saito, Y., Shimomura, M., and Yabu, H.: Breath figures of nanoscale bricks: A universal method for creating hierarchic porous materials from inorganic nanoparticles stabilized with mussel-inspired copolymers. Macromol. Rapid Commun. 35, 1763 (2014).
29. Erdogan, B., Song, L., Wilson, J.N., Park, J.O., Srinivasarao, M., and Bunz, U.H.F.: Permanent bubble arrays from a cross-linked poly(para-phenyleneethynylene): Picoliter holes without microfabrication. J. Am. Chem. Soc. 126, 3678 (2004).
30. Zhang, Y. and Wang, C.: Micropatterning of proteins on 3D porous polymer film fabricated by using the breath-figure method. Adv. Mater. 19, 913 (2007).
31. Galeotti, F., Chiusa, I., Morello, L., Giani, S., Breviario, D., Hatz, S., Damin, F., Chiari, M., and Bolognesi, A.: Breath figures-mediated microprinting allows for versatile applications in molecular biology. Eur. Polym. J. 45, 3027 (2009).
32. Böker, A., Lin, Y., Chiapperini, K., Horowitz, R., Thompson, M., Carreon, V., Xu, T., Abetz, C., Skaff, H., Dinsmore, A.D., Emrick, T., and Russell, T.P.: Hierarchical nanoparticle assemblies formed by decorating breath figures. Nat. Mater. 3, 302 (2004).
33. Vohra, V., Yunus, S., Attout, A., Giovanella, U., Scavia, G., Tubino, R., Botta, C., and Bolognesi, A.: Bifunctional microstructured films and surfaces obtained by soft lithography from breath figure arrays. Soft Matter 5, 1656 (2009).
34. Bolognesi, A., Botta, C., and Yunus, S.: Micro-patterning of organic light emitting diodes using self-organised honeycomb ordered polymer films. Thin Solid Films 492, 307 (2005).
35. Maruyama, N., Koito, T., Nishida, J., Sawadaishi, T., Cieren, X., Ijiro, K., Karthaus, O., and Shimomura, M.: Mesoscopic patterns of molecular aggregates on solid substrates. Thin Solid Films 327329, 854 (1998).
36. Ferrari, E., Fabbri, P., and Pilati, F.: Solvent and substrate contributions to the formation of breath figure patterns in polystyrene films. Langmuir 27, 1874 (2011).
37. Stenzel-Rosenbaum, M.H., Davis, T.P., Fane, A.G., and Chen, V.: Porous polymer films and honeycomb structures made by the self-organization of well-defined macromolecular structures created by living radical polymerization techniques we acknowledge a DAAD (German Academic Exchange Service) scholarship (HSPIII) for Dr. M.H. Stenzel-Rosenbaum. Angew. Chem. Int. Ed. Engl. 40, 34283432 (2001).
38. Pitois, O. and Francois, B.: Formation of ordered micro-porous membranes. Eur. Phys. J. B 8, 225 (1999).
39. Srinivasarao, M.: Three-dimensionally ordered array of air bubbles in a polymer film. Science 292, 79 (2001).
40. Peng, J., Han, Y., Yang, Y., and Li, B.: The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer 45, 447 (2004).
41. Cheng, C.X., Tian, Y., Shi, Y.Q., Tang, R.P., and Xi, F.: Porous polymer films and honeycomb structures based on amphiphilic dendronized block copolymers. Langmuir 21, 6576 (2005).
42. Sun, W., Ji, J., and Shen, J.: Rings of nanoparticle-decorated honeycomb-structured polymeric film: The combination of pickering emulsions and capillary flow in the breath figures method. Langmuir 24, 11338 (2008).
43. Sun, H., Li, H., and Wu, L.: Micro-patterned polystyrene surfaces directed by surfactant-encapsulated polyoxometalate complex via breath figures. Polymer 50, 2113 (2009).
44. Jiang, X., Zhang, T., Xu, L., Wang, C., Zhou, X., and Gu, N.: Surfactant-induced formation of honeycomb pattern on micropipette with curvature gradient. Langmuir 27, 5410 (2011).
45. Ito, Y., Virkar, A.A., Mannsfeld, S., Oh, J.H., Toney, M., and Locklin, J.: Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. J. Am. Chem. Soc. 131, 9396 (2009).
46. Thong, A.Z., Lim, D.S.W., Ahsan, A., Goh, G.T.W., Xu, J., and Chin, J.M.: Non-close-packed pore arrays through one-step breath figure self-assembly and reversal. Chem. Sci. 5, 1375 (2014).
47. Karthaus, O., Maruyama, N., Cieren, X., Shimomura, M., Hasegawa, H., and Hashimoto, J.: Water-assisted formation of micrometer-size honeycomb patterns of polymers. Langmuir 16, 6071 (2000).
48. Zheng, Y., Kubowaki, Y., Kashiwagi, M., and Miyazaki, K.: Process optimization of preparing honeycomb-patterned polystyrene films by breath figure method. J. Mech. Sci. Technol. 25, 33 (2011).
49. Stenzel, M.H., Barner-Kowollik, C., and Davis, T.P.: Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. J. Polym. Sci., Part A: Polym. Chem. 44, 2363 (2006).
50. Escalé, P., Rubatat, L., Billon, L., and Save, M.: Recent advances in honeycomb-structured porous polymer films prepared via breath figures. Eur. Polym. J. 48, 1001 (2012).
51. Han, X., Tian, Y., Wang, L., and Xiao, C.: Formation of honeycomb films based on a soluble polyimide synthesized from 2,2′-bis[4-(3,4-dicarboxyphenoxy)phenyl]hexafluoropropane dianhydride and 3,3′-dimethyl-4,4′-diaminodiphenylmethane. J. Appl. Polym. Sci. 107, 618 (2008).
52. Huh, M., Jung, M-H., Park, Y.S., Kang, T-B., Nah, C., Russell, R.A., Holden, P.J., and Yun, S. II: Fabrication of honeycomb-structured porous films from poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) via the breath figures method. Polym. Eng. Sci. 52, 920 (2012).
53. Muñoz-Bonilla, A., Fernández-García, M., and Rodríguez-Hernández, J.: Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog. Polym. Sci. 39, 510 (2014).
54. Li, X., Wang, Y., Zhang, L., Tan, S., Yu, X., Zhao, N., Chen, G., and Xu, J.: Fabrication of honeycomb-patterned polyalkylcyanoacrylate films from monomer solution by breath figures method. J. Colloid Interface Sci. 350, 253 (2010).
55. Wang, C., Mao, Y., Wang, D., Qu, Q., Yang, G., and Hu, X.: Fabrication of highly ordered microporous thin films by PS-b-PAA self-assembly and investigation of their tunable surface properties. J. Mater. Chem. 18, 683 (2008).
56. Li, L., Zhong, Y., Li, J., Gong, J., Ben, Y., Xu, J., Chen, X., and Ma, Z.: Breath figure lithography: A facile and versatile method for micropatterning. J. Colloid Interface Sci. 342, 192 (2010).


Type Description Title
Supplementary materials

Miller and Bao supplementary material
Miller and Bao supplementary material 1

 PDF (7.8 MB)
7.8 MB
Supplementary materials

Miller and Bao supplementary material
Miller and Bao supplementary material 2

 PDF (939 KB)
939 KB

Fabrication of flexible pressure sensors with microstructured polydimethylsiloxane dielectrics using the breath figures method

  • Sophie Miller (a1) and Zhenan Bao (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed