Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-27T15:44:19.914Z Has data issue: false hasContentIssue false

Ferromagnetism discovered on heat-treating the aromatic polyimide film Kapton

Published online by Cambridge University Press:  31 January 2011

Yutaka Kaburagi*
Affiliation:
Faculty of Engineering, Musashi Institute of Technology, 1–28–1, Tamazutsumi, Setagaya-ku, Tokyo 158–8557, Japan
Yoshihiro Hishiyama
Affiliation:
Faculty of Engineering, Musashi Institute of Technology, 1–28–1, Tamazutsumi, Setagaya-ku, Tokyo 158–8557, Japan
*
a)Address all correspondence to this author.ykabura@eng/musashi.tech.ac.jp
Get access

Abstract

A commercially available aromatic polyimide film Kapton H 25-μm thick was heat-treated at temperatures between 490 and 540 °C in a nitrogen flow. Magnetization was measured as a function of magnetic field at 5 and 300 K and function of temperature in a field of 1 T. Diamagnetic and paramagnetic components were observed for all heat-treated films. Ferromagnetism was discovered even at 300 K in the films heat-treated at 490–520 °C. The saturation magnetization, coercive force, and residual magnetization for the 520 °C treated film were 0.059 J T−1 kg−1, 0.004 T, and 9 × 10−4 J T−1 kg−1, respectively, at 300 K. The ferromagnetism has been maintained 5 months after. Original Kapton H and the heated films were found to contain no metallic elements. The ferromagnetism should be caused by a long-range magnetic spin ordering of unpaired electrons located on slightly decomposed imide molecules with defects or on intermediates with free radicals formed by thermal decomposition. The ordering is probably established three dimensionally throughout the heat-treated films with a structural regularity similar to that of the original Kapton H.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Organic Ferromagnetic Materials, edited by Iwamura, H. (CMC Co. Ltd., Tokyo, Japan, 1999), p 77 (in Japanese); J. Veciana and H. Iwamura, MRS Bull. 25, 41 (2000).Google Scholar
2.Tamura, M., Nakazawa, Y., Shiomi, D., Nozawa, K., Hosokoshi, Y., Ishikawa, M., Takahashi, M., and Kinoshita, M., Chem. Phys. Lett. 186, 401 (1991); M. Kinoshita, Jpn. J. Appl. Phys. 33, 5718 (1994); F. Palacio, G. Antorrena, R. Castro, R. Burriel, J.M. Rawson, J.N.B. Smith, N. Bricklebank, J.J. Novoa, and C. Ritter, Phys. Rev. Lett. 79, 2336 (1997).CrossRefGoogle Scholar
3.Torrance, J.B., Oostra, S., and Nazzal, A., Synth Met. 19, 709 (1987).CrossRefGoogle Scholar
4.Tanaka, H., Tokuyama, K., Saito, T., and Ota, T., Chem. Lett. 1913 (1990).Google Scholar
5.Ota, M. and Otani, S., Chem. Lett. (7), 1179 (1989); M. Ota, M. Igarashi, and S. Otani, Chem. Lett. (7), 1183 (1989);M. Ota, S. Otani, K. Kobayashi, M. Igarashi, and S. Otani, Mol. Cryst. Liq. Cryst. 176, 99 (1989).Google Scholar
6.Ovchinnikov, A.A. and Spector, V.N., Synth. Met. 27, B615 (1988).CrossRefGoogle Scholar
7.Kawabata, K., Mizutani, M., Fukuda, M., and Mizogami, S., Synth. Met. 33, 399 (1989).Google Scholar
8.Murata, K., Ushijima, H., Sugimoto, Y., Shimada, H., Imamura, M., and Nishijima, A., Bull. Chem. Soc. Jpn. 66, 651 (1993).CrossRefGoogle Scholar
9.Kaburagi, Y., Wakabayashi, H., Natori, S., Toriyama, T., Hishiyama, Y., Utsunomiya, M., Tanabe, Y., and Yasuda, E., Eurocarbon 2000, Abstracts, Berlin, Germany (2000), Vol. I, p. 193, submitted to J. Mater. Res.Google Scholar
10.Kaburagi, Y., Hishiyama, Y., Oka, H., and Inagaki, M., Carbon 39, 593 (2001).CrossRefGoogle Scholar
11.Hatori, H., Yadada, Y., Shiraishi, M., Yoshihara, M., and Kimura, T., Carbon 34, 201 (1996).CrossRefGoogle Scholar
12.Awaga, K., Sugano, T., and Kinoshita, M., J. Chem. Phys. 85, 2211 (1986); K. Awaga and Y. Maruyama, Chem. Phys. Lett. 158, 556 (1989).CrossRefGoogle Scholar
13.Shiomi, D., Katori, H.A., Goto, T., Sawa, H., Kato, R., Tamura, M., and Kinoshita, M., Mol. Cryst. Liq. Cryst. 223, 109 (1993); D. Shiomi, M. Tamura, H.A. Katori, T. Goto, A. Hayashi, Y. Ueda, H. Sawa, R. Kato, and M. Kinoshita, J. Mater. Chem. 4, 915 (1994).Google Scholar
14.Company address: Toray-DuPont, 1-5-6-Ninonbashi, Chuo-ku, Tokyo 103-0023, Japan.Google Scholar
15.Hatori, H., Yamada, Y., and Shiraishi, M., Carbon 30, 763 (1992); 31, 1307 (1993).CrossRefGoogle Scholar
16.Poon, T.W., Silverman, B.D., Saraf, R.F., Rossi, A.R., and Ho, P.S., Phys. Rev. B 46, 11456 (1992).CrossRefGoogle Scholar
17.Kazaryan, L.G., Tsvankin, D.Ya., Ginzburg, B.M., Tuichiev, Sh., Korzhavin, L.N., and Frenkel, S.Ya., Vysokomol. Soed. A 14, 1199 (1972).Google Scholar
18.Ehlers, G.F.L., Fisch, K.R., and Powell, W.R., J. Polym. Sci. A–17, 2969 (1969).CrossRefGoogle Scholar