Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-07T23:40:00.890Z Has data issue: false hasContentIssue false

Fiber push-out testing apparatus for elevated temperatures

Published online by Cambridge University Press:  03 March 2011

Jeffrey I. Eldridge
Affiliation:
NASA Lewis Research Center, Cleveland, Ohio 44135
Ben T. Ebihara
Affiliation:
NASA Lewis Research Center, Cleveland, Ohio 44135
Get access

Abstract

A newly developed apparatus has been designed for performing fiber push-out testing on continuous fiber-reinforced composites at elevated temperatures. This test measures the force at which a fiber resists being pushed by a flat-bottomed indenter moving at a constant speed. The applied load versus time curve characterizes the fiber debonding and sliding behavior. Extending measurements to elevated temperatures required incorporating sample/indenter heating in a nonoxidizing environment. With this new apparatus, fiber push-out tests have been performed up to 1100 δC in a vacuum of 10-6 Torr. A line-of-sight to the sample is maintained during the test which allows video monitoring of the push-out process. Results are shown for SCS-6 SiC fiber-reinforced Ti-24Al-llNb (at. %) and Ti-15V-3Cr-3Sn-3Al (at. %) matrix composites. The results are discussed in terms of residual stresses, interfacial wear, matrix ductility, and changing modes of interfacial failure. The effect of temperature-dependent interfacial wear on the interfacial roughness contribution to frictional shear stresses during fiber sliding is examined.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Marshall, D. B., J. Am. Ceram. Soc. 67 (12), C258 (1984).Google Scholar
2Marshall, D. B. and Oliver, W. C., J. Am. Ceram. Soc. 70 (8), 542 (1987).CrossRefGoogle Scholar
3Bright, J. D., Shetty, D. K., Griffin, C. W., and Limaye, S. Y., J. Am. Ceram. Soc. 72 (10), 1891 (1989).CrossRefGoogle Scholar
4Eldridge, J. I. and Brindley, P. K., J. Mater. Sci. Lett. 8 (12), 1451 (1989).CrossRefGoogle Scholar
5Yang, C. J., Jeng, S. M., and Yang, J-M., Scripta Metall. Mater. 24, 469 (1990).CrossRefGoogle Scholar
6Weih, T. P. and Nix, W. D., J. Am. Ceram. Soc. 74 (3), 524 (1991).Google Scholar
7Watson, M. C. and Clyne, T. W., Acta Metall. Mater. 40 (1), 141 (1992).CrossRefGoogle Scholar
8Evans, A. G., Zok, F. W., and Davis, J., Comp. Sci. Technol. 42, 3 (1991).CrossRefGoogle Scholar
9Curtin, W. A., J. Am. Ceram. Soc. 74 (11), 2837 (1991).CrossRefGoogle Scholar
10Chou, H. M., Barsoum, M. W., and Koczak, M. J., J. Mater. Sci. 26, 1216 (1991).CrossRefGoogle Scholar
11Marshall, D. B., Shaw, M. C., and Morris, W. L., Acta Metall. Mater. 40 (3), 443 (1992).CrossRefGoogle Scholar
12Le Petitcorps, Y., Pailler, R., and Naslain, R., Comp. Sci. Technol. 35, 207 (1989).CrossRefGoogle Scholar
13Aveston, J., Cooper, G. A., and Kelly, A., in The Properties of Fibre Composites, Conference Proceedings (IPC Science and Technology Press Ltd., Teddington, U.K., 1971), p. 15.Google Scholar
14Cox, B. N., Dadkhah, M. S., James, M. R., Marshall, D. B., Morris, W. L., and Shaw, M., Acta Metall. Mater. 38 (12), 2425 (1990).CrossRefGoogle Scholar
15Morscher, G., Pirouz, P., and Heuer, A. H., J. Am. Ceram. Soc. 73 (3), 713 (1990).CrossRefGoogle Scholar
16Brun, M. K., J. Am. Ceram. Soc. 75 (7), 1914 (1992).CrossRefGoogle Scholar
17Eldridge, J. I., Desktop Fiber Push-Out Apparatus, NASA TM 105341 (1991).Google Scholar
18Eldridge, J. I., in Intermetallic Matrix Composites II, edited by Miracle, D. B., Anton, D. L., and Graves, J. A. (Mater. Res. Soc. Symp. Proc. 273, Pittsburgh, PA, 1992), p. 325.Google Scholar
19Jero, P. D., Kerans, R. J., and Parthasarathy, T. A., J. Am. Ceram. Soc. 74 (11), 2793 (1991).CrossRefGoogle Scholar
20Mackin, T. J., Warren, P. D., and Evans, A. G., Acta Metall. Mater. 40 (6), 1251 (1992).CrossRefGoogle Scholar
21Eldridge, J. I., Bhatt, R. T., and Kiser, J. D., Ceram. Eng. Sci. Proc. 12 (7–8), 1152 (1991).CrossRefGoogle Scholar
22Ghosn, L. J., Kantzos, P., Eldridge, J. I., and Wilson, R., in HITEMP Review 1992, Vol. 2, NASA CP-10104 (1992), p. 27-1 to 27-12.Google Scholar
23Kerans, R. J. and Parthasarathy, T. A., J. Am. Ceram. Soc. 74 (7), 1585 (1991).CrossRefGoogle Scholar
24Koss, D. A., Kallas, M. N., and Hellmann, J. R., in Intermetallic Matrix Composites II, edited by Miracle, D. B., Anton, D. L., and Graves, J. A. (Mater. Res. Soc. Symp. Proc. 273, Pittsburgh, PA, 1992), p. 303.Google Scholar
25Kallas, M. N., Koss, D. A., Hahn, H. T., and Hellmann, J. R., J. Mater. Sci. 27, 3821 (1992).CrossRefGoogle Scholar
26Oel, H. J. and Frechette, V. D., J. Am. Ceram. Soc. 69 (4), 342 (1986).CrossRefGoogle Scholar
27Kantzos, P., Eldridge, J., Koss, D. A., and Ghosn, L. J., in Intermetallic Matrix Composites II, edited by Miracle, D. B., Anton, D. L., and Graves, J. A. (Mater. Res. Soc. Symp. Proc. 273, Pittsburgh, PA, 1992), p. 135.Google Scholar
28Roman, I. and Jero, P. D., in Intermetallic Matrix Composites II, edited by Miracle, D. B., Anton, D. L., and Graves, J. A. (Mater. Res. Soc. Symp. Proc. 273, Pittsburgh, PA, 1992), p. 337.Google Scholar