Skip to main content Accessibility help
×
Home

First-principles identification of localized trap states in polymer nanocomposite interfaces

  • Abhishek Shandilya (a1), Linda S. Schadler (a2) and Ravishankar Sundararaman (a1)

Abstract

Ab initio design of polymer nanocomposite materials for high breakdown strength requires prediction of localized trap states at the polymer–filler interface. Systematic first-principles calculations of realistic interfaces can be challenging, particularly for amorphous polymers and fillers that necessitate the calculation of ensembles of large unit cells with hundreds of atoms. We present a computational approach for automatically generating reasonable structures for amorphous polymer–filler interfaces, combining classical molecular dynamics and Monte Carlo simulations. We identify trap states by analyzing the localization of electronic eigenstates calculated using density functional theory on ensembles of interface structures, clearly distinguishing shallow trap states from delocalized band-edge states. Applying this approach to silica–polyethylene interfaces as an initial example, we find under-coordination and distorted coordination structures at amorphous silica surfaces contribute a combination of deep and shallow traps at these interfaces, whereas polyethylene does not generate localized interfacial states.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      First-principles identification of localized trap states in polymer nanocomposite interfaces
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      First-principles identification of localized trap states in polymer nanocomposite interfaces
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      First-principles identification of localized trap states in polymer nanocomposite interfaces
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

a)Address all correspondence to this author. e-mail: sundar@rpi.edu

Footnotes

Hide All

This paper has been selected as an Invited Feature Paper.

Footnotes

References

Hide All
1.Tanaka, T. and Imai, T.: Advances in nanodielectric materials over the past 50 years. IEEE Electr. Insul. Mag. 29, 10 (2013).
2.Henk, P.O., Kortsen, T.W., and Kvarts, T.: Increasing the electrical discharge endurance of acid anhydride cured DGEBA epoxy resin by dispersion of nanoparticle silica. High Perform. Polym. 11, 281 (1999).
3.Tanaka, T., Montanari, G.C., and Mulhaupt, R.: Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications. IEEE Trans. Dielectr. Electr. Insul. 11, 763 (2004).
4.Nelson, J.K., Fothergill, J.C., Dissado, L.A., and Peasgood, W.: Towards an understanding of nanometric dielectrics. In IEEE Annual Report: Conference on Electrical Insulation and Dielectric Phenomena, vol. 295 (IEEE, Cancun, Quintana Roo, Mexico, Mexico, 2002).
5.Lewis, T.J.: Nanometric dielectrics. IEEE Trans. Dielectr. Electr. Insul. 1, 812 (1994).
6.Huang, Y. and Schadler, L.S.: On the nature of high field charge transport in reinforced silicone dielectrics: Experiment and simulation. J. Appl. Phys. 120, 055101 (2016).
7.Huang, Y., Wu, K., Bell, M., Oakes, A., Ratcliff, T., Lanzillo, N.A., Breneman, C., Benicewicz, B.C., and Schadler, L.S.: The effects of nanoparticles and organic additives with controlled dispersion on dielectric properties of polymers: Charge trapping and impact excitation. J. Appl. Phys. 120, 055102 (2016).
8.Roy, S.L., Vu, T.T.N., and Teyssedre, G.: Modelling charge transport in a HVDC cable using different softwares: From fluid models to macroscopic model. In International Conference on Electrical Materials and Power Equipment, vol. 337 (IEEE, Guangzhou, China, China 2019).
9.Ltaief, A., Bouazizi, A., and Davenas, J.: Charge transport in carbon nanotubes-polymer composite photovoltaic cells. Materials 2, 710 (2009).
10.MacCrone, R.K., Keith Nelson, J., Schadler, L.S., Smith, R., and Keefe, R.J.: The use of electron paramagnetic resonance (EPR) in the probing of the nanodielectric interface. In IEEE International Conference on Solid Dielectrics, vol. 428 (IEEE, Winchester, UK 2007).
11.Ishimoto, K., Tanaka, T., Ohki, Y., Sekiguchi, Y., and Murata, Y.: Thermally stimulated current in low-density polyethylene/MgO nanocomposite. On the mechanism of its superior dielectric properties. Electr. Eng. Jpn. 176, 1 (2011).
12.Ramprasad, R., Shi, N., and Tang, C.: Modeling the physics and chemistry of interfaces in nanodielectrics. Nelson J. (eds) In Dielectric Polymer Nanocomposites (Springer, Boston, MA, 2010); p. 133.
13.Kubyshkina, E., Unge, M., and Jonsson, B.L.G.: Communication: Band bending at the interface in polyethylene–MgO nanocomposite dielectric. J. Chem. Phys. 146, 051101 (2017).
14.Shi, N. and Ramprasad, R.: Local properties at interfaces in nanodielectrics: An ab initio computational study. IEEE Trans. Dielectr. Electr. Insul. 15, 170 (2008).
15.Van Ginhoven, R.M., Jónsson, H., and Corrales, L.R.: Silica glass structure generation for ab initio calculations using small samples of amorphous silica. Phys. Rev. B: Condens. Matter Mater. Phys. 71, 451 (2005).
16.Van Ginhoven, R.M., Jónsson, H., and Corrales, L.R.: Characterization of exciton self-trapping in amorphous silica. J. Non-Cryst. Solids 352, 2589 (2006).
17.Anderson, N.L., Pramod Vedula, R., Schultz, P.A., Van Ginhoven, R.M., and Strachan, A.: Defect level distributions and atomic relaxations induced by charge trapping in amorphous silica. Appl. Phys. Lett. 100, 172908 (2012).
18.Unge, M., Christen, T., and Tornkvist, C.: Electronic structure of polyethylene—Crystalline and amorphous phases of pure polyethylene and their interfaces. In Annual Report: Conference on Electrical Insulation and Dielectric Phenomena, vol. 525 (IEEE, Montreal, QC, Canada, 2012).
19.Unge, M., Tornkvist, C., and Christen, T.: Space charges and deep traps in polyethylene—Ab initio simulations of chemical impurities and defects. In IEEE International Conference on Solid Dielectrics, vol. 935 (IEEE, Bologna, Italy 2013).
20.Moyassari, A., Unge, M., Hedenqvist, M.S., Gedde, U.W., and Nilsson, F.: First-principle simulations of electronic structure in semicrystalline polyethylene. J. Chem. Phys. 146, 204901 (2017).
21.Kremer, K. and Grest, G.S.: Dynamics of entangled linear polymer melts: A molecular-dynamics simulation. J. Chem. Phys. 92, 5057 (1990).
22.Lau, K.Y., Vaughan, A.S., Chen, G., Hosier, I.L., and Holt, A.F.: On the dielectric response of silica-based polyethylene nanocomposites. J. Phys. D Appl. Phys. 46, 095303 (2013).
23.Lau, K.Y., Vaughan, A.S., Chen, G., Hosier, I.L., Ching, K.Y., and Quirke, N.: Polyethylene/silica nanocomposites: Absorption current and the interpretation of SCLC. J. Phys. D: Appl. Phys. 49, 295305 (2016).
24.Wang, Y., Qiang, D., Xu, Z., Chen, G., and Vaughan, A.: The effect of loading ratios and electric field on charge dynamics in silica-based polyethylene nanocomposites. J. Phys. D Appl. Phys. 51, 395302 (2018).
25.Sundararaman, R. and Goddard, W.A.3rd: The charge-asymmetric nonlocally determined local-electric (CANDLE) solvation model. J. Chem. Phys. 142, 064107 (2015).
26.Sundararaman, R., Schwarz, K.A., Letchworth-Weaver, K., and Arias, T.A.: Spicing up continuum solvation models with SaLSA: The spherically averaged liquid susceptibility ansatz. J. Chem. Phys. 142, 054102 (2015).
27.Sundararaman, R. and Ping, Y.: First-principles electrostatic potentials for reliable alignment at interfaces and defects. J. Chem. Phys. 146, 104109 (2017).
28.Ping, Y., Sundararaman, R., and Goddard, W.A. III: Solvation effects on the band edge positions of photocatalysts from first principles. Phys. Chem. Chem. Phys. 17, 30499 (2015).
29.Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).
30.Sundararaman, S., Huang, L., Ispas, S., and Kob, W.: New interaction potentials for alkali and alkaline-earth aluminosilicate glasses. J. Chem. Phys. 150, 154505 (2019).
31.Sundararaman, S., Ching, W-Y., and Huang, L.: Mechanical properties of silica glass predicted by a pair-wise potential in molecular dynamics simulations. J. Non-Cryst. Solids 445–446, 102 (2016).
32.Sundararaman, S., Huang, L., Ispas, S., and Kob, W.: New optimization scheme to obtain interaction potentials for oxide glasses. J. Chem. Phys. 148, 194504 (2018).
33.Hossain, D., Tschopp, M.A., Ward, D.K., Bouvard, J.L., Wang, P., and Horstemeyer, M.F.: Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer 51, 6071 (2010).
34.Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., and Hutchison, G.R.: Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminf. 4, 17 (2012).
35.Sundararaman, R., Letchworth-Weaver, K., Schwarz, K.A., Gunceler, D., Ozhabes, Y., and Arias, T.A.: JDFTx: Software for joint density-functional theory. SoftwareX 6, 278 (2017).
36.Garrity, K.F., Bennett, J.W., Rabe, K.M., and Vanderbilt, D.: Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81, 446 (2014).
37.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997).
38.Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787 (2006).
39.Arias, T.A., Payne, M.C., and Joannopoulos, J.D.: Ab initio molecular dynamics: Analytically continued energy functionals and insights into iterative solutions. Phys. Rev. Lett. 69, 1077 (1992).
40.Lehmann, G. and Taut, M.: On the numerical calculation of the density of states and related properties. Phys. Status Solidi B 54, 469 (1972).
41.Momma, K. and Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).

Keywords

First-principles identification of localized trap states in polymer nanocomposite interfaces

  • Abhishek Shandilya (a1), Linda S. Schadler (a2) and Ravishankar Sundararaman (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed