Skip to main content Accessibility help
×
Home

First-principles investigation of structural, electronic, and thermoelectric properties of n- and p-type Mg2Si

  • Naomi Hirayama (a1), Tsutomu Iida (a1), Shunsuke Morioka (a1), Mariko Sakamoto (a1), Keishi Nishio (a1), Yasuo Kogo (a1), Yoshifumi Takanashi (a1) and Noriaki Hamada (a2)...

Abstract

We theoretically investigated the structural and thermoelectric properties of Mg2Si with Al and Sb (Na and B) as n-type (p-type) impurities. Supercell calculations involving relaxation of the atomic positions using an ab initio pseudo-potential method were performed. The formation energies, Eform,i, for the i = Mg, Si, and 4b sites, and consequently, the energetically preferred sites occupied by the impurities, were discussed. The calculated Eform,i were used to estimate the impurity-site occupancy probabilities, pi(T), based on the canonical distribution in the equilibrium state, i.e., pi(T) ∝ exp(−Eform,i/kBT) (Boltzmann constant: kB, temperature: T), and the resultant effects on the carrier concentration. Next, an all-electron full-potential linearized augmented-plane-wave calculation was performed based on the optimized structures, and the temperature dependence of the thermoelectromotive force (the Seebeck coefficient) was evaluated using the Boltzmann transport equation. The calculated and experimental results for n-type doped systems were compared.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: hirayama@rs.tus.ac.jp

References

Hide All
1.Oto, Y., Iida, T., Sakamoto, T., Miyahara, R., Natsui, A., Nishio, K., Kogo, Y., Hirayama, N., and Takanashi, Y.: Thermoelectric properties and durability at elevated temperatures of impurity doped n-type Mg2Si. Phys. Status Solidi C 10, 1857 (2013).
2.Boriseneko, V.E.: Semiconducting Silicide (Springer, Berlin, 2000); p. 285.
3.Morris, R.G., Redin, R.D., and Danielson, G.C.: Semiconducting properties of Mg2Si single crystals. Phys. Rev. 109, 1909 (1958).
4.Akasaka, M., Iida, T., Nemoto, T., Soga, J., Sato, J., Makino, K., Fukano, M., and Takanashi, Y.: Non-wetting crystal growth of Mg2Si by vertical Bridgman method and thermoelectric characteristics. J. Cryst. Growth 304, 196 (2007).
5.Kato, A., Yagi, T., and Fukusako, T.N.: First-principles studies of intrinsic point defects in magnesium silicide. J. Phys.: Condens. Matter 21, 205801 (2009).
6.Jund, P., Viennois, R., Colinet, C., Hug, G., F`evre, M., and T´edenac, J-C.: Lattice stability and formation energies of intrinsic defects in Mg2Si and Mg2Ge via first principles simulations. J. Phys.: Condens. Matter 25, 035403 (2013).
7.Sakamoto, T., Iida, T., Matsumoto, A., Honda, Y., Nemoto, T., Sato, J., Nakajima, T., Taguchi, H., and Takanashi, Y.: Thermoelectric characteristics of as commercialized Mg2Si source doped with Al, Bi, Ag, and Cu. J. Electron. Mater. 39, 1708 (2010).
8.Zaitsev, V.K., Fedorov, M.I., Gurieva, E.A., Eremin, I.S., Konstantinov, P.P., Samunin, A.Yu., and Vedernikov, M.V.: Highly effective Mg2Si1−xSnx thermoelectrics. Phys. Rev. B 74, 045207 (2006).
9.Mars, K., Ihou-Mouko, H., Pont, G., Tobola, J., and Scherrer, H.: Thermoelectric properties and electronic structure of Bi- and Ag-doped Mg2Si1−xGex compounds. J. Electron. Mater. 38, 1360 (2009).
10.Ihou-Moukoa, H., Mercier, C., Tobola, J., Pont, G., and Scherrer, H.: Thermoelectric properties and electronic structure of p-type Mg2Si and Mg2Si0.6Ge0.4 compounds doped with Ga. J. Alloys Compd. 509, 6503 (2011).
11.Hirayama, N., Iida, T., Funashima, H., Morioka, S., Sakamoto, M., Nishio, K., Kogo, Y., Takanashi, Y., and Hamada, N.: Theoretical analysis of structure and formation energy of impurity-doped Mg2Si: Comparison of first-principles codes for material properties. Jpn. J. Appl. Phys. Special Issue: Semiconducting Silicides Green Technology 54, 07JC05 (2015).
12.Zwolenski, P., Tobola, J., and Kaprzyk, S.: A theoretical search for efficient dopants in Mg2X (X = Si, Ge, Sn) thermoelectric materials. J. Electron. Mater. 40, 889 (2011).
13.Bourgeois, J., Tobola, J., Wiendlocha, B., Chaput, L., Zwolenski, P., Berthebaud, D., Gascoin, F., Recour, Q., and Scherrer, H.: Study of electron, phonon, and crystal stability versus thermoelectric properties in Mg2X (X = Si, Sn) compounds and their alloys. Funct. Mater. Lett. 6, 1340005 (2013).
14.Liu, W., Tan, X., Yin, K., Liu, H., Tang, X., Shi, J., Zhang, Q., and Uher, C.: Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1−xSnx solid solutions. Phys. Rev. Lett. 108, 166601 (2012).
15.Tobola, J., Kaprzyk, S., and Scherrer, H.: Mg-vacancy-induced semiconducting properties in Mg2Si1−xSbx from electronic structure calculations. J. Electron. Mater. 39, 2064 (2010).
16.Kutorasinski, K., Wiendlocha, B., Tobola, J., and Kaprzyk, S.: Importance of relativistic effects in electronic structure and thermopower calculations for Mg2Si, Mg2Ge, and Mg2Sn. Phys. Rev. B 89, 115205 (2014).
17.Zwolenski, P., Tobola, J., and Kaprzyk, S.: KKR–CPA study of electronic structure and relative stability of Mg2X (X = Si, Ge, Sn) thermoelectrics containing point defects. J. Alloys Compd. 627, 85 (2015).
18.http://www.quantum-espresso.org (accessed January 1, 2015).
19.Hirayama, N., Iida, T., Funashima, H., Morioka, S., Sakamoto, M., Nishio, K., Kogo, Y., Takanashi, Y., and Hamada, N.: First-principles study on structural and thermoelectric properties of Al- and Sb-doped Mg2Si. J. Electron. Mater. 44, 1656 (2015).
20.McCarty, L.V., Kasper, J.S., Horn, F.H., Decker, B.F., and Newkirk, A.E.: A new crystalline modification of boron. J. Am. Chem. Soc. 80, 2592 (1958).
21.Kasai, H., Akai, H., and Yoshida, H.: Introduction to Computational Materials Design (Osaka University Press, Osaka, 2005). (In Japanese).
22.Vosko, S.H., Wilk, L., and Nusair, M.: Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 58, 1200 (1980).
23.Painter, G.S.: Improved correlation corrections to the local-spin-density approximation. Phys. Rev. B 24, 4264 (1981).
24.Andersen, O.K.: Linear methods in band theory. Phys. Rev. B 12, 3060 (1975).
25.Takeda, T. and Kubler, J.: Linear augmented plane wave method for self-consistent calculations. J. Phys. F: Met. Phys. 9, 661 (1979).
26.Hirayama, N., Iida, T., Nishio, K., Kogo, Y., Takanashi, Y., and Hamada, N.: First-principles calculation of Seebeck coefficient in impurity doped Mg2Si: Supercell versus rigid band approach. (In preparation).
27.Fiameni, S., Battiston, S., Boldrini, S., Famengo, A., Agresti, F., Barison, S., and Fabrizio, M.: Synthesis and characterization of Bi-doped Mg2Si thermoelectric materials. J. Solid State Chem. 193, 142 (2012).
28.Klemm, W. and Westlinning, H.: Untersuchungen über die Verbindungen des Magnesiums mit den Elementen der IV b-Gruppe. Z. Anorg. Allg. Chem. 245, 365 (1941).
29.Owen, E.A. and Preston, G.D.: The atomic structure of two intermetallic compounds. Proc. Phys. Soc., London 36, 341 (1924).
30.Shannon, R.D. and Prewitt, C.T.: Effective ionic radii in oxides and fluorides. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 25, 925 (1969).
31.http://kkr.phys.sci.osaka-u.ac.jp (accessed January 1, 2015).
32.Koenig, P., Lynch, D.W., and Danielson, G.C.: Infrared absorption in magnesium silicide and magnesium germanide. J. Phys. Chem. Solids 20, 122 (1961).
33.Hybertsen, M.S. and Louie, S.: Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 34, 5390 (1986).
34.Gygi, F. and Baldereschi, A.: Quasiparticle energies in semiconductors: Self-energy correction to the local-density approximation. Phys. Rev. Lett. 62, 2160 (1989).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed