Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T13:42:39.965Z Has data issue: false hasContentIssue false

Formation and control of nanoporous Ag through electrochemical dealloying of the melt-spun Cu-Ag-Ce alloys

Published online by Cambridge University Press:  10 May 2012

Guijing Li
Affiliation:
Department of Materials Physics & Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China; MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, P. R. China
Xiaoping Song
Affiliation:
Department of Materials Physics & Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China; MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, P. R. China
Feifei Lu
Affiliation:
Department of Materials Physics & Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China; MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, P. R. China
Zhanbo Sun*
Affiliation:
Department of Materials Physics & Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China; MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, P. R. China
Zhimao Yang
Affiliation:
Department of Materials Physics & Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China; MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, P. R. China
Shengchun Yang
Affiliation:
Department of Materials Physics & Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China; MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, P. R. China
Bingjun Ding
Affiliation:
Department of Materials Physics & Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China; MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, P. R. China
*
a)Address all correspondence to this author. e-mail: szb@mail.xjtu.edu.cn
Get access

Abstract

In this work, the ultrafine nanoporous Ag ribbons were achieved through addition of 2 at.%–6 at.% Ce into the melt-spun Cu-Ag alloys and applying different electrochemical dealloying potentials. The dendritic morphology of the ligaments in the dealloyed Cu80Ag20 alloy varied to be equiaxial due to the addition of Ce, and the pore size reduced from 200 nm to less than 60 nm. The nanoporous Ag with an average pore size of ∼15 nm was obtained from the Cu74Ag20Ce6 alloy. The pore and ligament sizes of the nanoporous Ag prepared from the Cu76Ag20Ce4 alloy exhibited an increasing tendency with the increase of applied potentials, while the dealloyed Cu78Ag20Ce2 had an opposite variation. Moreover, the addition of Ce into the Cu-Ag alloys also promoted the dealloying. Nanoporous Ag exhibited the stronger enhancement of the surface enhanced Raman scattering effects with the increase of Ce contents in the precursory alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Christensen, C.H. and Nørskov, J.K.: Green gold catalysis. Science 327, 278 (2010).CrossRefGoogle ScholarPubMed
2.Ji, H., Frenzel, J., Qi, Z., Wang, X.G., Zhao, C.C., Zhang, Z.H., and Eggeler, G.: An ultrafine nanoporous bimetallic Ag-Pd alloy with superior catalytic activity. CrystEngComm 12, 4059 (2010).CrossRefGoogle Scholar
3.Taguchi, A. and Schüth, F.: Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 77, 1 (2005).CrossRefGoogle Scholar
4.Wittstock, A., Zielasek, V., Biener, J., Friend, C.M., and Bäumer, M.: Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327, 319 (2010).Google Scholar
5.Xu, C.X., Xu, X.H., Su, J.X., and Ding, Y.: Research on unsupported nanoporous gold catalyst for CO oxidation. J. Catal. 252, 243 (2007).CrossRefGoogle Scholar
6.Chen, X. and Qiao, Y.: Science and prospects of using nanoporous materials for energy absorption. Mater. Res. Soc. Symp. Proc. 1041, 02 (2008).Google Scholar
7.Dixon, M.C., Daniel, T.A., Hieda, M., Smilgies, D.M., Chan, M.H.W., and Allara, D.L.: Preparation, structure, and optical properties of nanoporous gold thin films. Langmuir 23, 2414 (2007).CrossRefGoogle ScholarPubMed
8.Jiao, Y., Ryckman, J.D., Ciesielski, P.N., Escobar, C.A., Jennings, G.K., and Weiss, S.M.: Patterned nanoporous gold as an effective SERS template. Nanotechnology 22, 295302 (2011).CrossRefGoogle Scholar
9.Kim, H., Kim, Y., Joo, J.B., Ko, J.W., and Yi, J.: Preparation of coral-like porous gold for metal ion detection. Microporous Mesoporous Mater. 122, 283 (2009).Google Scholar
10.Jeon, G., Yang, S.Y., Byun, J., and Kim, J.K.: Electrically actuatable smart nanoporous membrane for pulsatile drug release. Nano Lett. 11, 1284 (2011).CrossRefGoogle ScholarPubMed
11.Luechinger, N.A., Walt, S.G., and Stark, W.J.: Printable nanoporous silver membranes. Chem. Mater. 22, 4980 (2010).CrossRefGoogle Scholar
12.Hodge, A.M., Doucette, R.T., Biener, M.M., Biener, J., Cervantes, O., and Hamza, A.V.: Ag effects on the elastic modulus values of nanoporous Au foams. J. Mater. Res. 24, 1600 (2009).CrossRefGoogle Scholar
13.Schrinner, M., Ballauff, M., Talmon, Y., Kauffmann, Y., Thun, J., Möller, M., and Breu, J.: Single nanocrystals of platinum prepared by Partial dissolution of Au-Pt nanoalloys. Science 323, 617 (2009).CrossRefGoogle ScholarPubMed
14.Zhang, Z.H., Wang, Y., Qi, Z., Somsen, C., Wang, X.G., and Zhao, C.C.: Fabrication and characterization of nanoporous gold composites through chemical dealloying of two phase Al-Au alloys. J. Mater. Chem. 19, 6042 (2009).CrossRefGoogle Scholar
15.Hakamada, M. and Mabuchi, M.: Thermal coarsening of nanoporous gold: Melting or recrystallization. J. Mater. Res. 24, 301 (2009).CrossRefGoogle Scholar
16.Pugh, D.V., Dursun, A., and Corcoran, S.G.: Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75Pt0.25. J. Mater. Res. 18, 216 (2003).CrossRefGoogle Scholar
17.Hakamada, M. and Mabuchi, M.: Fabrication of nanoporous palladium by dealloying and its thermal coarsening. J. Alloys Compd. 479, 326 (2009).CrossRefGoogle Scholar
18.Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N., and Sieradzki, K.: Evolution of nanoporosity in dealloying. Nature 410, 451 (2001).CrossRefGoogle ScholarPubMed
19.Xu, C.X., Li, Y.Y., Tian, F., and Ding, Y.: Dealloying to nanoporous silver and its implementation as a template material for construction of nanotubular mesoporous bimetallic nanostructures. ChemPhysChem 11, 3320 (2010).CrossRefGoogle ScholarPubMed
20.Zhang, Z.H., Wang, Y., Qi, Z., Zhang, W.H., Qin, J.Y., and Frenzel, J.: Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying. J. Phys. Chem. C 113, 12629 (2009).Google Scholar
21.Morrish, R. and Muscat, A.J.: Nanoporous silver with controllable optical properties formed by chemical dealloying in supercritical CO2. Chem. Mater. 21, 3865 (2009).CrossRefGoogle Scholar
22.Wang, X.G., Qi, Z., Zhao, C.C., Wang, W.M., and Zhang, Z.H.: Influence of alloy composition and dealloying solution on the formation and microstructure of monolithic nanoporous silver through chemical dealloying of Al-Ag alloys. J. Phys. Chem. C 113, 13139 (2009).CrossRefGoogle Scholar
23.Li, Z.Q., Li, B.Q., Qin, Z.X., and Lu, X.: Fabrication of porous Ag by dealloying of Ag-Zn alloys in H2SO4 solution. J. Mater. Sci. 45, 6494 (2010).CrossRefGoogle Scholar
24.Ding, Y. and Chen, M.: Nanoporous metals for catalytic and optical applications. MRS Bull. 34, 569 (2009).Google Scholar
25.Chen, L., Yu, J., Fujita, T., and Chen, M.: Nanoporous copper with Tunable Nanoporosity for SERS applications. Adv. Funct. Mater. 19, 1221 (2009).CrossRefGoogle Scholar
26.Yeh, F.H., Tai, C.C., Huang, J.F., and Sun, I.W.: Formation of porous silver by electrochemical alloying/dealloying in a water-Insensitive zinc chloride-1-ethyl-3-methyl imidazolium chloride ionic liquid. J. Phys. Chem. B 110, 5215 (2006).CrossRefGoogle Scholar
27.Qian, L.H. and Chen, M.W.: Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Appl. Phys. Lett. 91, 083105 (2007).CrossRefGoogle Scholar
28.Sieradzki, K., Corderman, R.R., Shukla, K., and Newman, R.C.: Computer simulations of corrosion: Selective dissolution of binary alloys. Philos. Mag. A 59, 713 (1989).CrossRefGoogle Scholar
29.Snyder, J., Asanithi, P., Dalton, A.B., and Erlebacher, J.: Stabilized nanoporous metals by dealloying ternary alloy precursors. Adv. Mater. 20, 4883 (2008).CrossRefGoogle Scholar
30.Ji, H., Wang, X., Zhao, C., Zhang, C., Xu, J., and Zhang, Z.: Formation, control and functionalization of nanoporous silver through changing dealloying media and elemental doping. CrystEngComm 13, 2617 (2011).CrossRefGoogle Scholar
31.Li, G.J., Song, X.P., Sun, Z.B., Yang, S.C., Ding, B.J., Yang, S., Yang, Z.M., and Wang, F.: Nanoporous Ag prepared from the melt-spun Cu-Ag alloys. Solid State Sci. 13, 1379 (2011).Google Scholar
32.Liu, J.B., Meng, L., and Zhang, L.: Rare earth microalloying in as-cast and homogenized alloys Cu-6 wt.% Ag and Cu-24 wt.% Ag. J. Alloys Compd. 425, 185 (2006).Google Scholar
33.Inoue, A., Park, J., and Masumoto, T.: Formation of amorphous Cu-Ag-Ce alloys by rapid solidification and their thermal and mechanical properties. Mater. Trans., JIM 35, 227(1994).CrossRefGoogle Scholar
34.Sugawara, H. and Ebiko, H.: Dezincification of brass. Corros. Sci. 11, 513 (1967).CrossRefGoogle Scholar
35.Snyder, J., Livi, K., and Erlebacher, J.: Dealloying silver/gold alloys in neutral silver nitrate solution: Porosity evolution, surface composition, and surface oxides. J. Electrochem. Soc. 155, C464 (2008).Google Scholar
36.Hakamada, M. and Mabuchi, M.: Nanoporous gold prism microassembly through a self-organizing route. Nano Lett. 6, 882 (2006).CrossRefGoogle ScholarPubMed
37.Dursun, A., Pugh, D.V., and Corcoran, S.G.: Dealloying of Ag-Au alloys in halide-containing electrolytes. J. Electrochem. Soc. 150, B355 (2003).CrossRefGoogle Scholar
38.Sun, Y.G., Mayers, B., Herricks, T., and Xia, Y.: Polyol synthesis of uniform silver Nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett. 3, 955 (2003).CrossRefGoogle Scholar
39.Xia, Y.N., Xiong, Y.J., Lim, B., and Skrabalak, S.E.: Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60 (2009).Google Scholar
40.Lu, H.B., Li, Y., and Wang, F.H.: Synthesis of porous copper from nanocrystalline two-phase Cu-Zr film by dealloying. Scr. Mater. 56, 165 (2007).CrossRefGoogle Scholar
41.Dursun, A., Pugh, D.V., and Corcoran, S.G.: Probing the dealloying critical potential. J. Electrochem. Soc. 152, B65 (2005).CrossRefGoogle Scholar
42.Zhang, Q., Wang, X., Qi, Z., Wang, Y., and Zhang, Z.: A benign route to fabricate nanoporous gold through electrochemical dealloying of Al-Au alloys in a neutral solution. Electrochim. Acta 54, 6190 (2009).Google Scholar
43.Zhang, Z.H., Wang, Y., Wang, Y.Z., Wang, X.G., Qi, Z., Ji, H., and Zhao, C.C.: Formation of ultrafine nanoporous gold related to surface diffusion of gold adatoms during dealloying of Al2Au in an alkaline solution. Scr. Mater. 62, 137 (2010).CrossRefGoogle Scholar
44.Tiwari, V.S., Oleg, T., Darbha, G.K., Hardy, W., Singh, J.P., and Ray, P.C.: Nonresonance SERS effects of silver colloids with different shapes. Chem. Phys. Lett. 446, 77 (2007).Google Scholar
45.Michaels, A.M., Jiang, J., and Brus, L.: Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules. J. Phys. Chem. B 104, 11965 (2000).CrossRefGoogle Scholar
46.Li, W., Camargo, P.H.C., Lu, X., and Xia, Y.: Dimers of silver nanospheres: Facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett. 9, 485 (2009).Google Scholar
47.Nie, S. and Emory, S.R.: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102 (1997).Google Scholar