Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T08:22:07.624Z Has data issue: false hasContentIssue false

Fracture toughness of diamondlike carbon coatings

Published online by Cambridge University Press:  31 January 2011

M. Nastasi
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
P. Kodali
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
K. C. Walter
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. D. Embury
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
R. Raj
Affiliation:
Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309-0422
Y. Nakamura
Affiliation:
Department of Mechanical Engineering, Kagoshima University, Kagoshima 890-0065, Japan
Get access

Abstract

The fracture behavior of diamondlike carbon (DLC) coatings on Si substrates has been examined using microindentation. The presence of DLC coatings reduces the radial crack length to less than one-half the crack length observed in uncoated Si at the same indenter load. A total work of fracture analysis of the radial cracks formed in the DLC-coating/Si-substrate system gives 10.1 MPa m1/2 as the average fracture toughness for DLC alone. A bond-breaking calculation for DLC suggests that the elastic limit fracture toughness should be 1.5 MPa (m)1/2. The higher value obtained from experiment and total work analysis suggests that plastic work and/or a tortuous path crack evolution occurred during DLC fracture process.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nastasi, M., Elmoursi, A. A., Faehl, R. J., Hamdi, A. H., Henins, I., Malaczynski, G.W., Mantese, J.V., Munson, C., Qui, X., Reass, W.A., Rej, D. J., Scheuer, J. T., Speck, C. E., Walter, K. C., and Wood, B. P., in Ion-Solid Interactions for Materials Modification and Processing, edited by Poker, D. P., Ila, D., Cheng, Y-T., Harriott, L. R., and Sigmon, T. W. (Mater. Res. Soc. Symp. Proc. 396, Pittsburgh, PA, 1995), p. 455.Google Scholar
2.Walter, K. C., Nastasi, M., Baker, N. P., Munson, C.P., Scarborough, W.K., Scheuer, J. T., Wood, B. P., Conrad, J. R., Sridharan, K., Malik, S., and Breun, R. A., Surf. Coat. Technol. 103–104, 205 (1998).CrossRefGoogle Scholar
3.Tuszewski, M., Henins, I., Nastasi, M., Scarborough, W.K., Walter, K. C., and Lee, D. H., IEEE Trans. Plasma Sci. 26, 1653 (1998).CrossRefGoogle Scholar
4.Handbook of Modern Ion Beam Materials Analysis, edited by Tesmer, J. T. and Nastasi, M. (Materials Research Society, Pittsburgh, PA, 1995).Google Scholar
5.Volkert, C. A., J. Appl. Phys. 70, 3521 (1991).CrossRefGoogle Scholar
6.Stoney, G. G., Proc. Roy. Soc. A82, 172 (1909).Google Scholar
7.Anstis, G. R., Chantikul, P., Marshall, D. B., and Lawn, B. R., J. Am. Ceram. Soc. 64 (9), 533538 (1981).CrossRefGoogle Scholar
8.Robertson, J., Prog. Solid State Chem. 20, 199 (1991).CrossRefGoogle Scholar
9.Walter, K. C., Nastasi, M., Kung, H., Kodali, P., Munson, C., Henins, I., and Wood, B.P., in Mechanical Behavior of Diamond and Other Forms of Carbon, edited by Drory, M.D., Bogy, D.B., Donley, M. S., and Field, J. E. (Mater. Res. Soc. Symp. Proc. 383, Pittsburgh, PA, 1995), p. 411.Google Scholar
10.Tamor, M. A., in Applications of Diamond Films and Related Materials: 3rd International Conference, 1995, edited by Feldman, A., Tzeng, Y., Yardbrough, W.A., Yoshikawa, M., and Murakaw, M. (U.S. G.P.O., 1995, NIST special publication; 885), p. 691.Google Scholar
11.Anstis, G. R., Chantikul, P., Marshall, D. B., and Lawn, B. R., J. Am. Ceram. Soc. 64 (9), 553–538 (1981).CrossRefGoogle Scholar
12.Griffith, A. A., Philos. Trans. Roy. Soc. London A221, 163198 (1921).Google Scholar
13.Dean, J., Lange's Handbook of Chemistry, 14th ed. (McGraw-Hill, New York, 1976).Google Scholar
14.Walter, K. C., Kung, H., Tesmer, J. T., Kodali, P., Levine, T.E., Rej, D. J., Nastasi, M., and Hirvonen, J-P., Surf. Coat. Technol. 74/75, 734 (1995).CrossRefGoogle Scholar
15.Irwin, G. R., in Handbuch der Physik (Springer-Verlag, Berlin, 1958), Vol. 6, p. 557. Also see Ref. 28, Chap. 3.Google Scholar
16.Li, X. D., Diao, D. F., and Bhushan, B., Acta Materialia 45, 44534461 (1997).CrossRefGoogle Scholar
17.Nakano, A., Kalia, R. K., and Vashishta, P., Phys. Rev. Lett. 75, 31383141 (1995).CrossRefGoogle Scholar
18.Gilbert, C. J., Ritchie, R. O., and Johnson, W. L., Appl. Phys. Lett. 71, 476478 (1997).CrossRefGoogle Scholar
19.Kobrin, H. and Harker, A. B., J. Mater. Sci. 24, 13631367 (1989).CrossRefGoogle Scholar
20.Lawn, B. R. and Fuller, E. R. Jr, J. Mater. Sci. 19, 40614067 (1984).CrossRefGoogle Scholar
21.Gruninger, M. F., Lawn, B. R., Farabaugh, E. N., and Wachtman, J. B. Jr, J. Am. Ceram. Soc. 70, 344348 (1987).CrossRefGoogle Scholar
22.Jaccodine, R. J., J. Electrochem. Soc. 110, 524527 (1963).CrossRefGoogle Scholar
23.Chen, C. P. and Leipold, M. H., Am. Ceram. Soc. Bull. 59, 469 (1980).Google Scholar
24.Nakamura, Y., unpublished.Google Scholar
25.Gilman, J. J., J. Appl. Phys. 31, 22082218 (1960).CrossRefGoogle Scholar
26.Messmer, C. and Biello, J., J. Appl. Phys. 52, 4623 (1981).CrossRefGoogle Scholar
27.Bhaduri, S. T. and Wang, F. F. Y., J. Mater. Sci. 21, 2489 (1986).CrossRefGoogle Scholar
28.Lawn, B., Fracture of Brittle Solids (Cambridge University Press, New York, 1995).Google Scholar
29.John, C. St., Philos. Mag. 32, 1193 (1975).CrossRefGoogle Scholar
30.Field, J. E. and Freeman, C. J., Philos. Mag. 43, 595618 (1981).CrossRefGoogle Scholar
31.Kelly, A. and Macmillan, N. H., Strong Solids, 3rd ed. (Clarendon Press, Oxford Press, New York, 1986).Google Scholar